

Department of Electrical & Electronics Engineering

Course Title: Electric Circuit Analysis (GR20A2023) Following documents are available in Course File.

S.No.	Points	Yes	No
1	Institute and Department Vision and Mission Statements	\checkmark	
2	Academic Calendar	\checkmark	
3	Subject Allocation Sheet	\checkmark	
4	Class Time Table, Individual Timetable (Single Sheet)	\checkmark	
5	Syllabus Copy	\checkmark	
6	Course Handout		
7	CO-PO Mapping	\checkmark	
8	Assignment Questions with CO's		
9	Tutorial Sheets With Solution		
10	Sessional Question Papers, External Question Paper and Scheme of Evaluation		
11	Previous University Question Papers		
12	Best, Average and Weak Answer Scripts for Each Sessional Exam. (Photocopies)		
13	CO-PO Attainments for All Mids.	\checkmark	
14	Soft Copy of Notes/Ppt/Slides		
15	Feedback From Students	\checkmark	
16	Result Analysis	\checkmark	
17	Remedial Action.		
18	Course Exit Survey		

Course Instructor / Course Coordinator

Course Instructor / Course Coordinator

Department of Electrical & Electronics Engineering

COURSE OBJECTIVES

Course/Subject: Electric C	ircuit Analysis	Course Code: GR20A2023
Name of the Program:	B.Tech	Year: II
Semester	: I	
Academic Year	: 2022-23	

Name of the Faculty: G Sandhya Rani

Dept.:EEE

On completion of this Subject/Course the student shall be able to:

S.No	Objectives				
1	Explain the various properties of Fourier series and Fourier transforms.				
2	Simplify the transient state analysis of a circuit.				
3	Evaluate the steady state analysis(three phase) and dot convention of given circuit.				
4	Apply the Laplace transforms to electric circuit.				
5	Develop the network parameters of the circuits.				

Signature of HOD

Signature of faculty

Date:

Date:

Department of Electrical & Electronics Engineering

COURSE OUTCOMES

Academic Year	: 2022-23	
Semester	: I	
Name of the Program:	B.Tech	Year: II

Course/Subject: Electric Circuit Analysis Course Code: GR20A2023

Name of the Faculty: G Sandhya Rani Dept.:EEE

The expected outcomes of the Course/Subject are:

S.No	Outcomes			
1	Apply Fourier series, network theorems for the analysis of electric circuits.			
2	Develop the transient response of electric circuits.			
3	Analyze three phase and mutually coupled circuits.			
4	Solve electrical circuits using Laplace transform and mark poles and zeros.			
5	Simplify network by two port parameters.			

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

Department of Electrical & Electronics Engineering

GUIDELINES TO STUDY THE COURSE /SUBJECT

Academic Year	: 2022-23			
Semester	: I			
Name of the Program: B.	Tech	Year: II		
Course/Subject: Electric	Circuit Analysis	Course Code: GR20A2023		
Name of the Faculty: G Sa	andhya Rani	Dept.:EEE		
Guidelines to study the Co	urse/ Subject:			

Course Design and Delivery System (CDD):

The Course syllabus is written into number of learning objectives and outcomes.

These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.

Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.

The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

Understand the principles of Learning

Understand the psychology of students

Develop instructional objectives for a given topic

Prepare course, unit and lesson plans

Understand different methods of teaching and learning

Use appropriate teaching and learning aids

Plan and deliver lectures effectively

Provide feedback to students using various methods of Assessments and tools of Evaluation

Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

GOKARAJU RANGARAJU

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Electrical & Electronics Engineering

SCHEDULE OF INSRTUCTIONS COURSE PLAN

Academic Year

: 2022-23

Semester : I

Name of the Program: B.Tech

Year: II

Course/Subject: Electric Circuit Analysis

Course Code: GR20A2023

Name of the Faculty: G Sandhya Rani

Dept.:EEE

	No. of		Objectives &
Exp.No.	Periods	Topics / Sub-Topics	Outcomes
			Nos.
1	2	Representation of continuous-time periodic signals by Fourier series	1&1
2	2	Dirichlet's conditions; Properties of Fourier series	1&1
3	2	Parseval's theorem; Trigonometric and Exponential Fourier series;	1&1
4	2	Complex Fourier spectrum; Fourier transform via Fourier series;	1&1
5	2	Fourier transform of periodic and aperiodic signals, Convergence of FT	1&1
6	2	Properties of Fourier transforms Parseval's theorem;	1&1
8	2	Fourier transforms involving impulse & Signum function & Hilbert Transform	1&1
9	2	Maximum Power Transfer theorem, Reciprocity theorem	2&2
10	2	Millman theorem, Compensation theorem	2&2
11	2	Telligence Theorem, Concept of duality and dual network	2&2
12	2	Solution of first and second order differential equations for Series RL, RC, RLC circuits	2&2
13	2	Solution of first and second order differential equations for parallel RL, RC, RLC circuits	2&2
14	2	Initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.	2&2

Department of Electrical & Electronics Engineering

15	2	Introduction to Three-phase circuits	3&3
16	2	Star-star, delta-delta analysis of balanced circuits of three phase 3 wire, 4 wire, delta circuits,	3&3
17	2	Star-star, delta-delta analysis of unbalanced analysis of three phase 3 wire, 4 wire, delta circuits	3&3
18	2	Measurement of power by three and two watt meters,	3&3
19	2	Measurement of reactive power by single wattmeter,	3&3
20	2	Mutual coupled circuits, Dot Convention in coupled circuits.	3&3
21	2	Review of Laplace Transform	4&4
22	2	Analysis of electrical circuits using Laplace Transform for standard inputs	4&4
23	2	Convolution integral	4&4
24	2	Inverse Laplace Transform	4&4
25	2	Transformed network with initial conditions,	4&4
26	2	Transfer function representation & Poles and Zeros.	4&4
27	2	Two Port Networks	5&5
28	2	Terminal pairs, relationship of two port variables,	5&5
29	2	Impedance & admittance parameters,	5&5
30	2	Hybrid and transmission parameters, condition for symmetry and reciprocity	5&5
32	2	Interrelationship between various parameters	5&5
33	2	Interconnections of two port networks (series, parallel and cascade)	5&5

Signature of HOD

Signature of faculty

Date:

Date:

Department of Electrical & Electronics Engineering

EVALUATION STRATEGY

Academic Year : 202	2-23
---------------------	------

Semester : I

Name of the Program: B.Tech

Year: II

Course/Subject: Electric Circuit Analysis

Name of the Faculty: G Sandhya Rani

Course Code: GR20A2023

Dept.:EEE

Designation: Assistant Professor

- 1. TARGET:
- A) Percentage for pass:
- b) Percentage of class:
- 2. COURSE PLAN & CONTENT DELIVERY:
 - OHP presentation of the Lectures
 - Solving exercise problems
 - Model questions
- 3. METHOD OF EVALUATION
 - 3.1 Continuous Assessment Examinations (CAE-I, CAE-II)
 - 3.2 Assignments
 - 3.3 Seminars
 - 3.4 Quiz
 - 3.5 Semester/End Examination

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Electrical and Electronics Engineering

Vision of the Institute

To be among the best of the institutions for engineers and technologists with attitudes, skills and knowledge and to become an epicentre of creative solutions.

Mission of the Institute

To achieve and impart quality education with an emphasis on practical skills and social relevance

Vision of the Department

To impart technical knowledge and skills required to succeed in life, career and help society to achieve self sufficiency.

Mission of the Department

- 1. To become an internationally leading department for higher learning.
- 2. To build upon the culture and values of universal science and contemporary education.
- 3. To be a center of research and education generating knowledge and technologies which lay groundwork in shaping the future in the fields of electrical and electronics engineering.
- 4. To develop partnership with industrial, R&D and government agencies and actively participate in conferences, technical and community activities.

Department of Electrical and Electronics Engineering

This Programme is meant to prepare our students to professionally thrive and to lead.During their progression:

Graduates will be able to

- **PEO 1**: Graduates will have a successful technical or professional careers, including supportive and leadership roles on multidisciplinary teams.
- **PEO 2**: Graduates will be able to acquire, use and develop skills as required for effective professional practices.
- **PEO 3**: Graduates will be able to attain holistic education that is an essential prerequisite for being a responsible member of society.
- **PEO 4**: Graduates will be engaged in life-long learning, to remain abreast in their profession and be leaders in our technologically vibrant society.

Programme Outcomes (B.Tech. – EEE)

At the end of the Programme, a graduate will have the ability to

- **PO-1:** Ability to apply knowledge of mathematics, science, and engineering.
- **PO-2:** Ability to identify, formulate, analyze engineering problems using engineering sciences.
- **PO-3:** Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety..
- **PO-4:** Ability to design and conduct experiments, as well as to analyze and interpret data with valid conclusions.
- **PO-5:** Ability to utilize experimental, statistical and computational methods and tools necessary for modelling engineering activities.
- **PO-6:** Ability to apply reasoning informed by the relative knowledge to evaluate societal, health, safety, legal and cultural issues and tasks applicable to the professional engineering practice.
- **PO-7:** Ability to adapt broad education necessary to understand the impact of engineering solutions and obtain sustainability in a global, economic, environmental, and societal context.
- **PO-8:** Ability to discover ethical principles and bind to professional and ethical responsibility.
- **PO-9:** Ability to function as an individual and in multi-disciplinary teams.
- **PO-10:** Ability to communicate effectively on complex activities in engineering community and society.
- **PO-11:** Ability to develop Project management principles and apply in various disciplinary environments.
- PO-12: Recognition of the need for, and an ability to engage in life-long learning

Program Specific Outcomes(PSOs):

- **PSO-1**: Graduates will interpret data and able to analyze digital and analog systems related to electrical and programming them.
- **PSO-2**: Graduates will able to demonstrate, design and model electrical, electronic circuits, power electronics, power systems and electrical machines.

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090, India

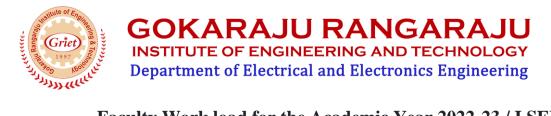
GRIET/DAA/1H/G/22-23

09 May 2022

Academic Year 2022-23

II B.Tech. – First Semester

S. No.	EVENT	PERIOD	DURATION	
1	Commencement of First Semester class work	10-10-2022		
2	I Spell of Instructions	10-10-2022 to 07-12-2022	9 Weeks	
3	I Mid-term Examinations	08-12-2022 to 12-12-2022	3 Days	
4	II Spell of Instructions	13-12-2022 to 07-02-2023	8 Weeks	
5	II Mid-term Examinations	08-02-2023 to 10-02-2023	3 Days	
6	Preparation/Break	11-02-2023 to 17-02-2023	1 Week	
7	End Semester Examinations (Theory/ Practical) Regular/ Supplementary	20-02-2023 to 11-03-2023	3 Weeks	
8	Commencement of Second Semester, AY 2022-23	13-03-2023		


II B.Tech. – Second Semester

S. No.	EVENT	PERIOD	DURATION	
1	Commencement of II Semester class work	13-03-2023		
2	I Spell of Instructions	13-03-2023 to 29-04-2023	7 Weeks	
3	Summer Vacation	01-05-2023 to 13-05-2023	2 Weeks	
4	I Spell of Instructions Contd	15-05-2023 to 27-05-2023	2 Weeks	
5	I Mid-term Examinations	29-05-2023 to 31-05-2023	3 Days	
6	II Spell of Instructions	01-06-2023 to 31-07-2023	8 Weeks	
7	II Mid-term Examinations	01-08-2023 to 03-08-2023	3 Days	
8	Preparation	04-08-2023 to 10-08-2023	1 Week	
9	End Semester Examinations	11-08-2023 to 31-08-2023	3 Weeks	
,	(Theory/ Practical) Regular / Supplementary	11-08-2023 to 51-08-2023	JWEEKS	
10	Commencement of III B.Tech First	01-09-20)23	
10	Semester, AY 2023-24			

J. Bave

Dean Academic Affairs

Faculty Work load for the Academic Year 2022-23 / I SEM Subject Allocation Sheet

S.No	Faculty	Designatio n	Facult y ID	YEAR (UG/PG)	Subject Name	No.of Section S	No. of Hours	Tota l (in Hrs)				
				II B.Tech	DCM	1	5					
2	Dr B Phaneendra Babu	Prof. & HOD	1563	II M.Tech	Dph 1	1	3	11				
				II M.Tech	DLED	1	3					
				III B.Tech	EHV	1	5					
3	Dr.D G Padhan	Prof.	1283	I M.Tech	EHV	1	3	11				
				II M.Tech	IS	1	3					
4	Dr. J. Sridevi	Prof.		B.Tech	PSA	1	6	11				
							010	III B.Tech	PS Lab	1	5	
5	Dr T Suresh Kumar	Prof.	1494	II B.Tech	EMF	1	5	11				
5				I Mtech	PE Lab	1	3	-				
				I Mtech	MSPEC	1	3					
6	V.Vijaya Rama	Asso, Prof.	Asso. Prof.	Asso. Prof. 361	II B.Tech	PGT	1	5	11			
	Raju			II B.Tech	DCM Lab	1	6					
				II B.Tech	PAE	1	5					
7	P Ravikanth Asso. Prof.	Asso. Prof.	Asso. Prof.	1178	1178	1178	1178	III B.Tech	NPTEL	1	3	14
											IV B.Tech	ED Lab
	A Vinay Kumar Asso. Pro	umar Asso. Prof.	A Vinay Kumar Asso. Prof. 881			f 881	IV B.Tech	HVE	2	10		
8				Asso. Prof.	Asso. Prof.		881	881	881	881	881	IV B.Tech
				I M.Tech	PQ&FACT S	1	3					

Department of Electrical and Electronics Engineering

9	Syed Sarfaraz Nawaz	Asso. Prof.	695	Electrical Maintenance Officer							
				III B.Tech	PE Lab	1	5				
10	Dr Pakkiraiah B	Asso. Prof.	1593	I M.Tech	IPR	1	3	14			
				III B.Tech	PE Lab	1	6				
11	Dr D Naga	Asso. Prof.	1598	IV B.Tech	ED	2	10	16			
	Mallesara Rao	1.650.1101.	1570	IV B.Tech	ED Lab	1	6	10			
12	Dr P Sri Vidya	Asso. Prof.	931	III B.Tech	MC Lab	1	6	11			
12	Devi		751	IV B.Tech	PS-III	1	5				
				I M.Tech	MAEM	1	3				
13	Dr D Raveendhra	Asso. Prof.	1604	1604	1604	1604	I M.Tech	PQ Lab	1	3	11
				III B.Tech	MC	1	5				
14	P.Praveen Kumar	Asst. Prof	609	I B.Tech	1 st Year BEE						
15	R. Anil Kumar	Asst. Prof	657	I B.Tech]	l st Year B	EE				
		Asst. Prof	692	II B.Tech	PAE Lab	1	6				
16	U Vijaya Lakshmi			692	692	692	III B.Tech	PS Lab	1	6	15
				I B.Tech	BEE Lab	1	3				
				II B.Tech	CI	1	2				
17	D Karuna Kumar	Asst. Prof	760	IV B.Tech	ED Lab	1	6	14			
				I B.Tech	BEE Lab	2	6				
				III B.Tech	MC Lab	1	6				
19	M Naga Sandhya Rani	Asst. Prof	882	882	882	882	II B.Tech	BEEE	1	5	14
				IV B.Tech	PWK	1	3				
20	G Sandhya Rani	Asst. Prof	888	II B.Tech	ECA	1	5	14			

INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Electrical and Electronics Engineering

				III B.Tech	PE Lab	1	6	
				IV B.Tech	PWK	1	3	
				II B.Tech	DCM Lab	1	6	
21	M Rekha	Asst. Prof	933	III B.Tech	PE Lab	1	6	15
				I B.Tech	BEE Lab	1	3	
22	W H-h - D			IV B.Tech	ED Lab	1	6	12
22	V Usha Rani	Asst. Prof	1045	III B.Tech	PS Lab	1	6	12
				I B.Tech	BEE	1	6	
23	P Prashanth Kumar	Asst. Prof	1055	IV B.Tech	PS-III	1	5	20
				I B.Tech	BEE Lab	3	9	
24	K Sudha	Asst. Prof	1211	I B.Tech	1	st Year B	EE	
				II B.Tech	PAE Lab	1	6	
25	M Prashanth	Asst. Prof	1279	II B.Tech	VEGC	1	2	14
				I B.Tech	BEE Lab	2	6	
26	D Sriniyaga Dag	_		IV B.Tech	EHV	2	10	12
26	D Srinivasa Rao	Asst. Prof	1540	IV B.Tech	PWK	1	3	13

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Electrical and Electronics Engineering

Class Time Table, Individual Timetable

GRIET/PRIN/06/G/01/22-23

BTech - EEE - A

Wef: 05th Oct 2022 II Year - I Semester

DAY/ HOUR	08:50 - 09:40	09:40 - 10:30	10:30 - 11:20	11:20 - 12:00	12:00 - 12:55	12:55 - 01:50	01:50 - 02:45		ROOM	NO		
MONDAY	EMF PAE			PGT	VI	EGS		Theory/Tutorial	4401			
TUESDAY	EC	CA	PGT		DCMT	Lab/PAE Lab	(A1/A2)			PAE Lab- 4505		
WEDNESDAY	ECA	DC	CMT	BREAK	EMF	P.	AE		Lab	DCMT Lab- 2106/07		
THURSDAY	PAE	DC	CMT	DREAK	DCMT	Lab/PAE Lab	(A2/A1)		Class Incharge:	U. Vijaya Lakshmi		
FRIDAY	EMF	E	CA		PAE	PAE PC		PAE PGT				
SATURDAY	C	CI	PGT		EMF	J	PE					
Subject Code		Subject Name		Faculty Code	Facult	y Name			Almanac			
GR20A2023	Elect	rical Circuit An	alysis	GSR	G. Sandhya Rani		1 st Spell of Instructions		Instructions	06/10/2022 to 29/11/2022		
GR20A2024	Principl	es of Analog El	ectronics	PRK	P. Rav	P. Ravikanth 1 st Mid-		erm	Examinations	30/11/2022 to 02/12/2022		
GR20A2025	DC Ma	chines and Tran	sformers	Dr PBB	Dr B. Phane	Dr B. Phaneendra Babu 2 nd Spe		ll of	Instructions	03/12/2022 to 27/01/2023		
GR20A2026		ctromagnetic Fi		Dr TSK	Dr. T. Suresh Kumar 2 nd Mid-		2 nd Mid-term Examinations		28/01/2023 to 31/07/2023			
GR20A2033	Power Ge	neration and Tr	ansmission	VVRR	V. Vijayarama Raju		Preparation		aration	01/02/2023 to 07/02/2023		
GR20A2028	Java Programming for Engineers						End Semester Examinations (Theory/ Practicals) Regular / Supplementary		ticals) Regular /	08/02/2023 to 28/02/2023		
GR20A2029	Principles of Analog Electronics Lab		UVL/MP	U. Vijaya M. Pra	Lakshmi/ Ishanth				01-03-			
GR20A2030	DC Mach	ines and Transfe	ormers Lab	VVRR/MRE	V. Vijaya	rama Raju∕ Rekha	Commencement of Second Semester A.Y 2021-22			2023		
GR20A2003	Con	stitution of India	a (CI)	DKK	D. Karur	na Kumar						
GR20A2002	Value E	thics and Gende	r Culture	МР	M. Pra	ishanth						

Department of Electrical and Electronics Engineering

Faculty Name: G Sandhya Rani									
DAY/ HOUR	10.20- 11.15	11.15- 12.10	12.10- 1.05	1.05- 1.40	1.40- 2.30	2.30 - 3.20	3:20 -4.10		
MONDAY									
TUESDAY	ECA								
WEDNESDAY				LUNCH					
THURSDAY				ICH					
FRIDAY	ECA								
SATURDAY									

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Electrical and Electronics Engineering

Branch:	Subject Code:	Academic Year:	Regulation:	Year: II
EEE	GR20A2023	2022-23	GR20	Semester: I

Electric Circuit Analysis (GR20A2023)

L:2 T:1 P:0 C:3

Syllabus

UNIT I FOURIER SERIES AND FOURIER TRANSFORM: Representation of continuous-time periodic signals by Fourier series; Dirichlet's conditions; Properties of Fourier series, Parseval's theorem; Trigonometric and Exponential Fourier series; Complex Fourier spectrum; Fourier transform via Fourier series; Fourier transform of periodic and aperiodic signals; Convergence of Fourier transform; Properties of Fourier transforms, Parseval's theorem; Fourier transforms involving impulse function and Signum function; Introduction to Hilbert Transform.

UNIT II

NETWORK THEOREMS Maximum Power Transfer theorem, Reciprocity theorem, Millman theorem, Compensation theorem, Telligence Theorem, Concept of duality and dual networks. **Solution of First and Second order networks** Solution of first and second order differential equations for Series and parallel RL, RC, RLC circuits, initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.

UNIT III

THREE PHASE CIRCUITS AND COUPLED CIRCUITS Three-phase circuits, star-star, delta-delta analysis of balanced circuits, unbalanced analysis of three phase 3 wire, 4 wire, delta circuits, measurement of power by three and two watt meters, measurement of reactive power by single wattmeter, Mutual coupled circuits, Dot Convention in coupled circuits.

UNIT IV

ELECTRICAL CIRCUIT ANALYSIS USING LAPLACE TRANSFORMS Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, Inverse Laplace Transform, transformed network with initial conditions, Transfer function representation, Poles and Zeros.

UNIT V

TWO PORT NETWORKS Two Port Networks, terminal pairs, relationship of two port variables, impedance, admittance, hybrid and transmission parameters, condition for symmetry and reciprocity, interrelationship between various parameters, interconnections of two port networks (series, parallel and cascade)

GOKARAJU RANGARAJU

INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Electrical and Electronics Engineering

Course Schedule

Academic Year	:	2022-23		
Semester	:	I		
Name of the Program: B.Tech			Year: II-I	Section: A
Course/Subject: Elec	e tric C i	ircuit Analysis	Course Code:	GR20A2023
Name of the Faculty:	: G Sar	ndhyarani		

Designation: Assistant Professor

Department: Electrical and Electronics Engineering

The Schedule for the whole Course / Subject is:

Sl.No	Topics	No of periods
1	Representation of continuous-time periodic signals by Fourier series	2
2	Dirichlet's conditions; Properties of Fourier series	2
3	Parseval's theorem; Trigonometric and Exponential Fourier series;	2
4	Complex Fourier spectrum; Fourier transform via Fourier series;	2
5	Fourier transform of periodic and aperiodic signals, Convergence of FT	2
6	Properties of Fourier transforms Parseval's theorem;	2
8	Fourier transforms involving impulse & Signum function & Hilbert Transform	2
9	Maximum Power Transfer theorem, Reciprocity theorem	2
10	Millman theorem, Compensation theorem	2
11	Telligence Theorem, Concept of duality and dual network	2
12	Solution of first and second order differential equations for Series RL, RC, RLC circuits	2
13	Solution of first and second order differential equations for parallel RL, RC, RLC circuits	2
14	Initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.	2
15	Introduction to Three-phase circuits	2
16	Star-star, delta-delta analysis of balanced circuits of three phase 3 wire, 4 wire, delta circuits,	2
17	Star-star, delta-delta analysis of unbalanced analysis of three phase 3 wire,	2

-

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Electrical and Electronics Engineering

	4 wire, delta circuits	
18	Measurement of power by three and two watt meters,	2
19	Measurement of reactive power by single wattmeter,	2
20	Mutual coupled circuits, Dot Convention in coupled circuits.	2
21	Review of Laplace Transform	2
22	Analysis of electrical circuits using Laplace Transform for standard inputs	2
23	Convolution integral	2
24	Inverse Laplace Transform	2
25	Transformed network with initial conditions,	2
26	Transfer function representation & Poles and Zeros.	2
27	Two Port Networks	2
28	Terminal pairs, relationship of two port variables,	2
29	Impedance & admittance parameters,	2
30	Hybrid and transmission parameters, condition for symmetry and reciprocity	2
32	Interrelationship between various parameters	2
33	Interconnections of two port networks (series, parallel and cascade)	2

Total No. of Instructional periods available for the course:66....... Periods

Course Outcomes-Program Outcomes (POs) Relationship Matrix (Relationships are indicated by mark HIGH as "H" and MEDIUM as "M")- COI

	P-Outcomes												
		1	2	3	4	5	6	7	8	9	10	11	12
s	1	Н	Н		Н	Н		Н	Η		Н	Н	Н
come	2			М			М		М	М		М	
C-Outcomes	3	М	Н	Н	Н	Н	Н	Н		Η	Н		Н
C	4		Н		Н	Н		Н	М		Н	М	Н
	5	Н		Н	М		Н	М	М	Η	М	М	

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Electrical and Electronics Engineering

Branch:	Subject Code:	Academic Year:	Regulation:	Year: II
EEE	GR20A2023	2022-23	GR20	Semester: I

Electric Circuit Analysis (GR20A2023)

L:2 T:1 P:0 C:3

Syllabus

UNIT I FOURIER SERIES AND FOURIER TRANSFORM: Representation of continuous-time periodic signals by Fourier series; Dirichlet's conditions; Properties of Fourier series, Parseval's theorem; Trigonometric and Exponential Fourier series; Complex Fourier spectrum; Fourier transform via Fourier series; Fourier transform of periodic and aperiodic signals; Convergence of Fourier transform; Properties of Fourier transforms, Parseval's theorem; Fourier transforms involving impulse function and Signum function; Introduction to Hilbert Transform.

UNIT II

NETWORK THEOREMS Maximum Power Transfer theorem, Reciprocity theorem, Millman theorem, Compensation theorem, Telligence Theorem, Concept of duality and dual networks. **Solution of First and Second order networks** Solution of first and second order differential equations for Series and parallel RL, RC, RLC circuits, initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.

UNIT III

THREE PHASE CIRCUITS AND COUPLED CIRCUITS Three-phase circuits, star-star, delta-delta analysis of balanced circuits, unbalanced analysis of three phase 3 wire, 4 wire, delta circuits, measurement of power by three and two watt meters, measurement of reactive power by single wattmeter, Mutual coupled circuits, Dot Convention in coupled circuits.

UNIT IV

ELECTRICAL CIRCUIT ANALYSIS USING LAPLACE TRANSFORMS Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, Inverse Laplace Transform, transformed network with initial conditions, Transfer function representation, Poles and Zeros.

UNIT V

TWO PORT NETWORKS Two Port Networks, terminal pairs, relationship of two port variables, impedance, admittance, hybrid and transmission parameters, condition for symmetry and reciprocity, interrelationship between various parameters, interconnections of two port networks (series, parallel and cascade)

Unit-1 reality Condition: Founier Series and Founier Transform Condition Onder Wahren - Demonte Signal Can be Stephinit ou numril in principal into holosoppe Ramp - tork Impulse - molitant profiled These are basic Signals Poralsola - trorier and a An Signal is said to be a Continous time Signal uif it is omissions to reduce stimit plan availables at all instants of time Fourier Series applicable to Peniodic Signals 6714 ie., the Signals which repeat periodically over - of < + < D ... - The representation of Signals Over a certain interval of time in terms of linear Combination of functions is Called fourier Series. Methods of Fountr Senies Ingnomenie formans ins - Cosine form Dirdy (1)). - Exponential form.

Dirchlet's Condition: The Condition Under which Peniodic Signal Con be represented by fourier series is known as Dirichlet's - It should satisfy following Conditions ->a) The function x(t) or f(x) must be a single Volued function Condition. b) the function x(+) has only finite number of maxima and minima c) The function x(+) has finite number of clis continuities. Mallouberral longer 15 Filing Internet d) The function is absolutely integrable Over one Period ie., Strict) di 200 a) Single valued in the in the function meons depends. on Single Paramete 0 1 2 3 4 foregi f(a) = ax + bx + C

2 Trignometric form of fourier Series We can show the signal x(t) a sum of sime and Cosine functions, whose frequencies are integral multiples de voluire intégrate de portourous di it plot don no $T = 2\pi t$ of at at being and over (it) with $\dot{x}(t) = a_0 + a_1 \cos \omega_0 t + a_2 \cos 2\omega_0 t + \cdots + a_k \cos k\omega_0 t$ + b, Sinwort + basin awot + ... bik sin kwot in an cosnicit of Sinnicot n=1 00 1 2 an cosnicot at bn Sinnicot Wo - fundomental freq : ao, a, a2 bo, b, b2 .. are constants tor Signal to be Periodic, with should satisfy the condition $\mathcal{L}(t+\mathbf{T}) = \mathbf{a}_0 + \sum_{n=1}^{K} a_n \cos(n(t+\mathbf{T}) + b_n \sin(n(t+\mathbf{T})))$ = $a_0 + \Sigma$ an Coslogn(t + 2nT) + $b_n Sincon(t + 2T)$ n=1 w_0 = $a_0 + \sum_{n=1}^{k} a_n \cos(\omega_n t + 2n\pi) + b_n \sin(\cos(\omega t + 2n\pi))$ = ant E an coswont + bn Sin wont n=1 ind bara no usulars of N fm rof

Evaluation of fourier Coefficients of Trigonometric four (s)
The Constants ap we shall integrate both sides of equation
to evaluat ap we shall integrate both sides of equation

$$x(4)$$
 over one period (to to $+0+T$) at on arbitrary time to
 t_{0}^{*T} .
 t_{0}^{*T} $t_{0}^$

To find an , multiply equation x (#) by Cos mwot and integrate Over one period

to
$$+T$$

 $\int x(t) \cos m \omega_0 t dt = a_0 \int \cos m \omega_0 t dt$
 t_0
 t_0

and
$$a^{nd}$$
 form $= T/2$
 $\int_{1}^{t_0+T} x(t) \cos m\omega_0 t dt = a_m \frac{T}{2}$
 t_0
 $t_$

181

11

20

A THE

3

1st and and au 2000

$$3^{rd}$$
 is equal to $7/2$
 $f^{o+T}_{\chi(t)}$ Sign much $dt = bmT/2$
 f_{o}
 $bm = \frac{2}{T} + \int_{0}^{0+T} x(t) \sin m \omega dt dt$
 $bm = \frac{2}{T} + \int_{0}^{0+T} x(t) \sin m \omega dt dt$
 f_{o}
 $bm = \frac{2}{T} + \int_{0}^{0+T} x(t) \sin m \omega dt dt$
 f_{o}
 $f_$

$$\begin{aligned} a_{0} &= \frac{1}{T} \int_{0}^{T} z(t) dt \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} A \operatorname{Sint} dt \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} A \operatorname{Sint} dt \\ &= \frac{A}{2\pi} (2) \\ &= -\frac{A}{2\pi} (2) \\ &= -\frac{A}{2\pi}$$

$$-\frac{A}{2\pi} \left[\frac{(-1)^{m\tau_{1}}}{1+n} + \frac{(-1)^{m-1}}{1-n} \right]$$

for odds $a_{n} = -\frac{A}{2r_{1}} \left[\frac{1+r_{1}}{1+n} + \frac{1-r_{1}}{1-n} \right]$

$$= 0$$

for even $a_{n} = -\frac{A}{2r_{1}} \left[\frac{-1-r_{1}}{1+n} + \frac{-1-r_{1}}{1-n} \right]$

$$= -\frac{A}{2\pi} \left[\frac{-2}{1+r_{1}} - \frac{2}{n-1} \right]$$

$$= -\frac{A}{2\pi} \left[\frac{-2}{mr_{1}} - \frac{2}{mr_{1}} \right]$$

$$= -\frac{AA}{\pi} \left[\frac{2}{mr_{1}} - \frac{2}{mr_{1}} \right]$$

$$= -\frac{AA}{\pi} \left[\frac{2}{mr_{1}} - \frac{2}{mr_{1}} \right]$$

$$b_{n} = \frac{A}{\pi} \int_{0}^{T} x(t) \operatorname{Simmod} dt$$

$$= -\frac{AA}{\pi} \int_{0}^{T} \operatorname{Sint} \operatorname{Sinnt} dt$$

$$= \frac{A}{\pi} \int_{0}^{T} \operatorname{Sint} \operatorname{Sinnt} dt$$

$$= -\frac{A}{\pi} \int_{0}^{T} \operatorname{Sint} \operatorname{Sinnt} \operatorname{Sinnt} \operatorname{Sinnt} \operatorname{Sinnt} dt$$

$$= -\frac{A}{\pi} \int_{0}^{T} \operatorname{Sint} \operatorname{Sinnt} \operatorname$$

For n=1
b₁ =
$$\frac{A}{8\pi}$$

Jhe Inig nometrie fourier Series
($\chi(1)$) = $a_0 + \frac{\Sigma}{n_{el}} a_n \cos u + b_n \sin u$
($\chi(1)$) = $a_0 + \frac{\Sigma}{n_{el}} a_n \cos u + b_n \sin u$
($\chi(1)$) = $a_0 + \frac{\Sigma}{n_{el}} a_n \cos u + b_n \sin u$
 $z = a_0 + \frac{\Sigma}{2} a_n \cos u + b_n \sin u$
 $z = \frac{A}{1} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} a_n \cos u$
 $z = \frac{A}{1} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{n_{el}} (-\frac{2A}{\pi(n_{el})} \cos u)$
 $= \frac{A}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{\pi} \sin u$
 $= \frac{2}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{\pi} \sin u$
 $= \frac{2}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{\pi} \sin u$
 $= \frac{2}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{\pi} \sin u$
 $= \frac{2}{\pi} + \frac{A}{2\pi} \sin u + \frac{\Sigma}{\pi} \sin u$
 $= \frac{2}{\pi} + \frac{2}{\pi} \sin u + \frac{\Sigma}{\pi} \sin u$
 $= \frac{2}{\pi} + \frac{2}{\pi} \sin u + \frac{\Sigma}{\pi} \sin u + \frac{\Sigma}$

$$A_{n} \cos(n\omega_{0} + + \theta_{n}) = A_{n} \left[\frac{\theta \pi s}{2} \frac{s^{i}(n\omega_{0} + \theta_{n})}{+ e^{-j}(n\omega_{0} + \theta_{0})} \right]$$

Subsiliat this in cosine fourier

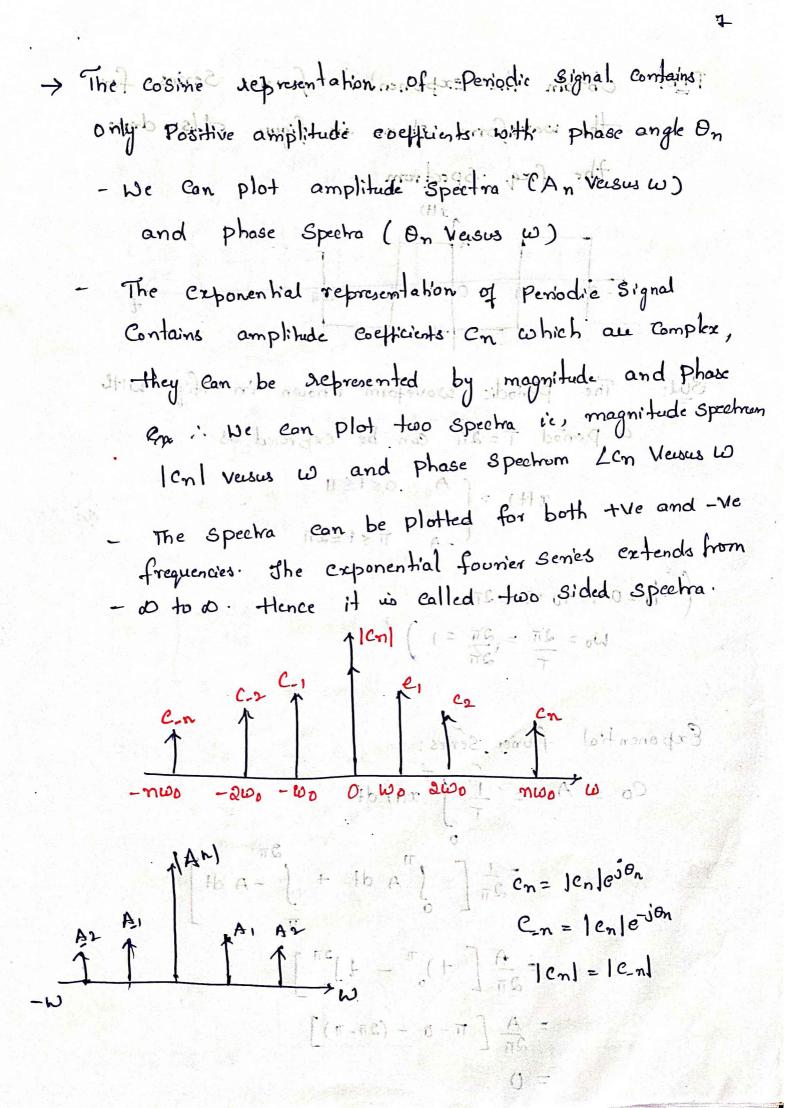
$$\pi e propertation:$$

$$\chi(t) = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos(n\omega_{0} + \theta_{n}) \qquad (Jn Ac System
is consider
$$\chi(t) = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos(n\omega_{0} + \theta_{n}) \qquad (Jn Ac System
is consider
$$\chi(t) = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos(n\omega_{0} + \theta_{n}) = J(n\omega_{0} + \theta_{n}) + Jn dscel hom
= A_{0} + \sum_{n=1}^{\infty} A_{n} e^{j(\omega_{0}n^{1} + \theta_{n})} + \sum_{n=1}^{\infty} A_{n} e^{-j(n\omega_{0} + \theta_{n})} + Jn dscel hom
= A_{0} + \sum_{n=1}^{\infty} A_{n} e^{j(\omega_{0}n^{1} + \theta_{n})} + \sum_{n=1}^{\infty} A_{n} e^{-j(n\omega_{0} + \theta_{n})} + Jn dscel hom
= A_{0} + \sum_{n=1}^{\infty} A_{n} e^{j(\omega_{0}n^{1} + \theta_{n})} + \sum_{n=1}^{\infty} A_{n} e^{-j(n\omega_{0} + \theta_{n})} e^{-j\omega_{0}n^{1}} + Jn ds e^{j(\omega_{0}n^{1} + \theta_{n})} e^{-j\omega_{0}n^{1}} e^{-j(\omega_{0}n^{1} + \theta_{n})} e^{-j\omega_{0}n^{1}} e^{j(\omega_{0}n^{1} + \theta_{n})} e^{j(\omega_{0}n^{1} + \theta_{n})} e^{-j\omega_{0}n^{1}} e^{-j(\omega_{0}n^{1} + \theta_{n})} e^{-j(\omega_{0}n^{1} + \theta_{n})}$$$$$$

- Commenter

Fourier Spectrum :-Jhe Fourier Spectrum of a periodic Signal x(+) is a plot of its fourier Coefficients Versus frequency (is)

Two types


(a) Amplitude (b) Phase Spectrum Spectrum

→ The plot of amplitude of fourier Coefficients versus frequency.
The plot of phase of fourier Coefficients versus frequency us known as phase Spectrum.

Not: 1100 plots together au known as fourier grequency Speetra of x(t). This type of stepresentation is also called frequency domain representation

- The fourier Spectrum crists only at discrete frequencies now, where n=0,1,2... ete Hence it is known as discrete Spectrum or line Spectrum.

> Trigonometrie depresentation of periodie signal Contains both Sine and cosine tenses ith positive and negative amplitude Coefficients but with mo Phase angles. - Fourier Coefficients exist only for positive frequeries this spectra us called Single Sided Spectra. - The Speehum of Ingnometrie founder Service Extends o to a of phase of [Anl 1 he told off shuti S VELSUS Ao 1 Coefficials versus 24 10 facquenty. A3 1 Fmourn as Plaz Spectrum. 2000 plots togetters our known as 1 J. O.M. u wi former gradier og mitotroordore Any says side Altreguera domain representation bollos . odla The - Powies Spectrum chief districte 1 lo pliri frequencies nwo, where it is known as Chachele Spectron on lime Spectrom.

Ptb: Obtain the exponential fourier Series for
the waveform shown in figure also draw
the freq spectrum

$$\frac{1}{\sqrt{1-2}} = \frac{1}{\sqrt{1-2}} = \frac{$$

1.0

$$C_{n} = \lim_{T \to 0} \int_{1}^{T} \lim_{z \to 0} e^{j\pi h_{0}} dt = \lim_{z \to 0} dt = \lim_{z \to 0} \int_{1}^{2} \frac{1}{z(t)} e^{-j\pi h_{0}} dt = \int_{1}^{2\pi} \left[\int_{0}^{\pi} \int_{0}^{\pi} e^{j\pi h_{0}} e^{j\pi h_{0}} dt + \int_{-A}^{2\pi} e^{j\pi h_{0}} dt \right]$$

$$= \frac{1}{2\pi} \left[\int_{0}^{\pi} \int_{0}^{\pi} e^{j\pi h_{0}} e^{j\pi h_{0}} dt + \int_{-A}^{2\pi} e^{j\pi h_{0}} dt \right]$$

$$= \frac{1}{2\pi} \left[\left[e^{-j\pi h_{0}} \right]_{0}^{\pi} - \left[e^{-j\pi h_{0}} \right]_{0}^{\pi} + \frac{1}{2\pi\pi\pi} \left[e^{-j\pi h_{0}} e^{j\pi h_{0}}$$

Determination of coeff's of Exponential fourier Series
As we know from Exponential fourier
Series
$$x(t) = \sum_{n=0}^{\infty} c_n e^{jn\omega \delta t}$$

 $n=0$ $Woth e^{jk\omega \delta t}$ on both sides
and integrate over one period
 $\int_{0}^{0^{TT}} x(t) e^{-jk\omega \delta t} = \sum_{n=0}^{\infty} \int_{0}^{t_{0}^{TT}} e^{jn\omega \delta t} e^{-jk\omega \delta t} dt$
 t_{0}
 $T = z CK \cdot T$
 $\int_{0}^{t_{0}^{TT}} x(t) e^{-jk\omega \delta t} dt = T CK$
 $\int_{0}^{t_{0}^{TT}} x(t) e^{-jk\omega \delta t} dt = T CK$
 $CK = \frac{1}{T} \int_{0}^{t_{0}^{TT}} x(t) e^{-jn\omega \delta dt}$
 $C_{n} = \frac{1}{T} \int_{0}^{t_{0}^{TT}} x(t) e^{-jn\omega \delta dt}$
 $C_{n} = \frac{1}{T} \int_{0}^{t_{0}^{TT}} x(t) e^{-jn\omega \delta dt}$

Price: Find the exponential fourier series and plat
the freq. Spectrum for full wave stackified
Sine wave given in fig.4.18.
Userform can be expressed over one period

$$x(t) = A \sin t$$
 where $w = 2\pi i$ = 1
 $x(t) = A \sin t$ where $w = 2\pi i$ = 1
 $bco2$ (i) is a part of Sine wave with period = $2\pi i$
 $x(t) = A \sin t$ $0 \le t \le \pi i$
The full wave steelified sime wave is periodic
with period $T = \pi i$
 $to = 0$
 $t_0 + Tz = 0 + \pi = \pi i$
 $w = 2\pi i = 2\pi i$
The Exponential fourier Series:
 $y(t) = \sum_{n=-\infty}^{\infty} C_n e^{inwot}$
 $z = \sum_{n=-\infty}^{\infty} C_n e^{inwot}$
 $u = n = -\infty$
 $u = -\infty$

$$= \frac{1}{\pi} \int_{A}^{\pi} \operatorname{Sim} e^{-j \operatorname{an} t} dt$$

$$= \frac{A}{\pi} \int_{0}^{\pi} \operatorname{Sim} e^{-j \operatorname{an} t} dt$$

$$= \frac{A}{\pi} \int_{0}^{\pi} \frac{e^{j - e^{-j t}}}{2 \cdot j} e^{-j \operatorname{an} t} dt$$

$$= \frac{A}{\pi} \int_{0}^{\pi} \frac{e^{j - e^{-j t}}}{2 \cdot j} e^{-j \operatorname{an} t} dt$$

$$= \frac{A}{2\pi j} \left[\int_{0}^{\pi} e^{j (1 - 2n) t} - e^{-j (1 + 2n) t} dt \right]$$

$$= \frac{A}{2\pi j} \left[\frac{e^{j (1 - 2n) t}}{1 - 2n} - \frac{e^{-j (1 + 2n) t}}{1 + 2n} \right]_{0}^{\pi}$$

$$= \frac{A}{2\pi j} \left[\frac{e^{j (1 - 2n) t}}{1 - 2n} - \frac{e^{-j (1 + 2n) t}}{1 + 2n} \right]$$

$$= \frac{A}{2\pi j} \left[\frac{e^{j (1 - 2n) t}}{1 - 2n} - \frac{e^{-j (1 + 2n) t}}{1 + 2n} \right]$$

$$= \frac{A}{2\pi j} \left[\frac{e^{j (1 - 2n) \pi}}{1 - 2n} - \frac{e^{-j (1 + 2n) \pi}}{1 + 2n} \right]$$

$$= \frac{A}{2\pi j} \left[\frac{e^{j (1 - 2n) \pi}}{1 - 2n} - \frac{e^{-j (1 + 2n) \pi}}{1 + 2n} \right]$$

$$= \frac{A}{\pi j} \left[\frac{1 - 2n}{1 - 2n} - \frac{e^{-j (1 + 2n) \pi}}{1 + 2n} \right]$$

$$= \frac{A}{\pi j} \left[\frac{1 - 2n}{1 - 2n} - \frac{1 - 1}{1 + 2n} \right]$$

$$= \frac{A}{\pi j} \left[\frac{1 - 2n}{1 - 2n} - \frac{1 + 2n}{1 + 2n} \right]$$

$$= \frac{A}{\pi j} \left[\frac{1}{1 - 2n} - \frac{1 + 2n}{1 + 2n} \right]$$

$$= \frac{A}{\pi j} \left[\frac{2}{1 - 4n'} \right] = \frac{3A}{\pi j} \left[\frac{1}{1 - 4n'} \right]$$

R₁(+) and seg(+) are two Periodic signals with Period T and with fourier Series Coefficients Cn and Dn respectively.

Properties of Continous time fourier Series

Linear property It states that (1) $\chi_1(t) \xrightarrow{\sim} Cn$ $\chi_2(t)$ $\xrightarrow{\sim} Dn$ then $A \chi_1(t) + B \chi_2(t)$ $\xrightarrow{\sim} A Cn + B Dn$

Time Shifting Property: It States that excet) $\longrightarrow Cn$ to the state its then $x(t-to) \iff e$ in Cnthen $x(t-to) \iff e$ in Cn

Time Reversal Property: JA states that plageng noites: (git) with $x(Gt) \leftrightarrow Cn_{\infty}$ ted) adds is then $x(-t) \leftrightarrow C_{-n}$ Time Scaling Property: Stale that $x(Gt) \leftrightarrow Cn$ then $y(Gt) \leftrightarrow Cn$ then $y(Gt) \leftrightarrow Cn$

> ins = mis i phroques polainaités d'applicis that attacts that i

Tême Differentian Property:
State that'y sect)
$$\iff$$
 Cn the fine the first then $\frac{dx(t)}{dt}$ \implies jn ω_0 Cn the first first then $\frac{dx(t)}{dt}$ \implies jn ω_0 Cn the first first that $x(t)$ \iff Cn the first first the first first

It states that
$$x_1(t) \leftrightarrow c_n$$
 tall entries to
 $f_0(unic - x_2(t)) \leftrightarrow D_n$
then $x_1(t) + x_2(t) \leftrightarrow TcnD_n$

.

Multiplication Property:
todd state that
$$\chi_1(d)$$
 todd state the
st state that $\chi_1(d)$ \longleftrightarrow Cn
 $\chi_2(d)$ \longleftrightarrow Dn :
 π π dd
then $\chi_1(d)$ $\chi_2(d)$ \longleftrightarrow $\Sigma^{\infty} C_{\perp} D_{n-1}$
 $\chi_1(d) = -do$
Conjugate and Conjugate symmetry Property:
 $\chi(d) \leftarrow F_{S} C_{n}$
Conjugate Property states that $\chi^{*}(d) \leftarrow F_{S} C_{-n}^{*}$
Conjugate Symmetry Property $C_{-n} = C_{n}^{*}$

Parseval's Relation or Theorem or Property

$$J_{2}(H) \xrightarrow{Fs} C_{n}$$

$$J_{2}(H) \xrightarrow{Fs} D_{n} = H_{2}(H) \xrightarrow{C_{1}(H)} D_{n}$$

Then Porsevals relation states that

Os

$$\frac{1}{T} \int x_{1}(t) x_{2}^{*}(t) dt = \sum C_{n} D_{n}^{*}$$

$$\int x_{1}(t) x_{2}^{*}(t) dt = \sum C_{n} D_{n}^{*}$$

$$\int t_{0}^{*} x_{1}(t) x_{2}^{*}(t) dt = n = -\infty$$

and Parsevals identify states that = (1) at = (1), x 12

*
$$n = -\infty$$
 $T = \int \frac{1}{2} \int \frac{1}{2}$

$$i_{f} x_{1}(t) = x_{2}(t) = x(t)$$

- IV

$$P_{\underline{moof}}: Consider LHS$$

$$LHS = \frac{1}{T} \int_{0}^{t_{0}+T} \frac{x_{1}c_{1}}{x_{1}c_{2}} \frac{x_{2}}{c_{1}} \frac{c_{1}}{c_{2}} \frac{x_{1}c_{2}}{c_{1}} \frac{dt}{dt}$$

$$= \frac{1}{T} \int_{0}^{t_{0}+T} \frac{x_{1}c_{2}}{c_{2}} \frac{x_{1}c_{2}}{c_{2}} \frac{dt}{dt}$$

$$= \frac{1}{T} \int_{0}^{t_{0}} \frac{x_{1}c_{2}}{c_{2}} \frac{x_{1}c_{2}}{c_{2}} \frac{dt}{dt}$$

$$= \sum_{n=-\infty}^{\infty} C_n + \int_{T}^{t_0 t_T} x_0^{t} t e^{jn\omega_0 t} dt$$

$$= \sum_{n=-\infty}^{\infty} C_n + \int_{T}^{t_0 t_T} x_0^{t} t e^{jn\omega_0 t} dt$$

$$= \sum_{n=-\infty}^{\infty} C_n + \int_{T}^{t_0 t_T} x_0^{t} t e^{jn\omega_0 t} dt$$

Т

to

n=-0

$$= \sum_{n=-\infty}^{\infty} C_n (D_n)^n$$

$$\frac{1}{T} \int_{t_0}^{t_0 + T} \sum_{x_1(t)}^{t_0 + T} \sum_{x_2(t)}^{t_0(t)} dt = \sum_{m=-\infty}^{\infty} C_m D_m^{t_0(t)}$$

$$- \text{Hence Proved}$$
Consider Porseval's 3 denking
$$J_1 x_1(t) = x_2(t) = x(t) \text{ then the velation}$$

$$Changes to \\Consider \frac{1}{T} \int_{t_0}^{t_0 + T} x_1(t) x_2^{t_0(t)} dt = \sum_{n=-\infty}^{\infty} C_n C_n^{t_0(t)}$$

$$\Rightarrow \frac{1}{T} \int_{t_0}^{t_0 + T} x(t) x_1^{t_0(t)} dt = \sum_{n=-\infty}^{\infty} C_n C_n^{t_0(t)}$$

$$Sence |x(t)|^{t_0} = x(t) x_1^{t_0(t)} = \frac{1}{T}$$

$$M = C_n C_n^{t_0(t)}$$

$$And |C_n|^{t_0} = C_n C_n^{t_0(t)}$$

$$\Rightarrow \frac{1}{T} \int_{t_0}^{t_0 + T} |x(t)|^{t_0(t)} dt = \sum_{n=-\infty}^{\infty} |C_n|^{t_0(t)}$$

Founder Transforms of 10 landre possible fourier Series to analyze Periodic Signals - it is a combination of exponentials and the former Coefficients. Fourier transforms mostly used to analyze aperiodic Signals and can be used to analyse periodic also. - Fourier transform is a technique which transforms Signals from the Continous time domain to Corresponding freq domain and Vice-Versa which applies for both peniodic and apeniodic Signals. - Fouries transform can be developed by finding the fouriesenies of Periodic Function, and then He fending to all the the the Fourier Transform representation of Non Periodic function:-Consider an arbritory function 2013 with a discrete with Spectral lines of frequencies 0, fo, 260. with adjacent Spectral lines Separated by

frequency interval of to = 1/There into f A plot of Spectrum of Signal 2003 is given it is a combination of apprentials and the family the the stand of the terminal of the description of the terminal of terminal of the terminal of termina Signals and can be used to analyse formadic also. Toonier Arandform is a internet doid of the month internet is a stand of the stand applique foi both periodie and aperiodie Signale. Founda transform can if developed by fincting Founder Transform Stepresentation of Non Peniod's fractions Consider an arbitry fundion acts with a $\frac{1}{1} = 214$ -317 discrete with Spectral times of Acquinity 0, to, 260 with adjoctmi spectral lines separated by

- The amplitude of a Speetrum is decreased but the general shape remains unchanged. - As seen in the figure an increase in fundamental period To results in a Spectrum in Which Speehal lines become closer and closer. as fo = $\frac{1}{T}$, T goes on increasing to goes on decreasing and Spacing between Spectral lines. become Smaller and Smaller AS T tincleases, T tends to infinity, self becomes (a non periodic function - At the Same time, Separation between the Spectral lines becomes infinetely Small, a non periodie Signal Will have Continous Spectrum. T OWNP YMM, ON CHIT
 - TCA The Latter of the A

the K + ((+) + K - (+)

V3

Derivation of fouries transform of Non Periodic
Signal from the fouries Series of Periodic Signal:
Let
$$x(t)$$
 be non periodic function
and $X_T(t)$ be periodic with period T
 $x(t) = H x_T(t) - 0$
 $T + \infty$
Fourier Series of periodic Signal $X_T(t)$ is
 $X_T(t) = \sum_{n=-\infty}^{t} C_n e^{in\omega_0 t} - 0$
 $m_{2-\infty}$
When $C_n = \int_{T}^{T/2} x_T(t) e^{-in\omega_0 t} (w_0 = 2\pi)$
 $-T/2$
 $-T/2$
 $T = 0$, $n = 0$
 $T = 0$
 $T = 0$
 $T = 0$, $n = 0$
 $T = 0$
 $T = 0$, $n = 0$

$$z \int (4 \times_{T} (t)) e^{-j\omega t} dt$$

$$-\omega^{T \to 0}$$

$$= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \chi(\omega)$$

$$= \chi(\omega)$$

$$= \chi(\omega)$$

$$\therefore Tc_{n} = \chi(\omega)$$

$$\Rightarrow t = \int_{-\infty}^{\infty} t^{n(\omega)} e^{-j\omega t} dt$$

$$= \chi(\omega)$$

$$\Rightarrow fourier integral of $\chi(t)$

$$\Rightarrow \chi(\omega) represents freq. Spectrum of ω called Spectral $(\omega)\chi$

$$\Rightarrow \chi(t) = \int_{-\infty}^{\infty} C_{n} e^{jn\omega t} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \chi(\omega) e^{j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \chi(\omega) e^{j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \chi(\omega) e^{-j\omega t} dt$$$$$$

$$\begin{aligned} & \text{We have the equations} \\ & \chi(w) = \int_{-\infty}^{\infty} \chi(w) e^{-j\omega t} dt \\ & -\infty \end{aligned}$$

$$\begin{aligned} & \chi(w) = \int_{-\infty}^{\infty} \chi(w) e^{j\omega t} dt \\ & \chi(w) = \int_{-\infty}^{\infty} \chi(w) e^{j\omega t} dt \\ & \chi(w) = \int_{-\infty}^{\infty} \chi(w) \end{aligned}$$

$$\begin{aligned} & \chi(w) \text{ and } \chi(t) \text{ are tracent as fourier transform} \\ & \text{Pair and can be denoted as} \\ & \chi(w) = F(\chi(t)) = K \end{aligned}$$

$$\begin{aligned} & \chi(w) = F(\chi(t)) = K \end{aligned}$$

property shifting Property Properties of Fourier transforms Dirchlets Conditions :-The Conditions for a function set) to have fourier transform au: Time Revensal Property: 1. 2(1) is absolutely integral over the interval - of the of the of the star ie, j'|z(+) dt < 0 priles mit 2(+) has finite number of discontinuities 2. 3. 2(1) has finite number of moximo and minima in every finite time interval. $(4) \xleftarrow{FT} X(\omega)$ Linearity Property :) × ([- Ti + (+) + b $J_f x_1(t) \xleftarrow{FT} x_1(\omega) \text{ and } x_2(t) \xleftarrow{FT} X_2(\omega)$ then a x1(+) + b x2(+) ~ > a x1(w) + b x2(w) Where a and b are Constants Time Shifting Property: If x (+) * FT > X(in) and molegation and then a (t-to) (FT) e-jubo X(w) (arient i) tout in this (if xiare)

Frequency Shifting Property:
If set)
$$\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}{\stackrel{\text{FT}}}}{\stackrel{\text{FT}}}{\stackrel{\text{$$

-

Convolution Property:
If
$$x(t) \leftrightarrow x_1(\omega)$$
, $x_3(t) \leftrightarrow x_2(\omega)$
Hen $x_1(t) \leftrightarrow x_2(t) \leftrightarrow x_1(\omega) \times x_2(\omega)$
Multiplication Property:
If $x_1(t) \leftarrow x_1(\omega)$, $x_2(t) \leftrightarrow x_2(\omega)$
Hen $x_1(t) \times x_2(t) \leftrightarrow x_2(\omega)$
Hen $x_1(t) \times x_2(t) \leftrightarrow x_2(\omega)$
Hen $x_1(t) \times x_2(t) \leftrightarrow x_2(\omega)$
Hen $x_1(t) \leftrightarrow x_1(\omega)$
Modulation Property:
If $x(t) \leftrightarrow x_1(\omega)$
Hen $x_1(t) \leftrightarrow x_1(\omega)$
Hen

Parsenal's Theorem

$$J_{f} = \chi_{1}(L_{f}) \leftarrow F_{T} \rightarrow \chi_{1}(\omega)$$

$$J_{f} = \chi_{1}(L_{f}) \leftarrow F_{T} \rightarrow \chi_{2}(\omega)$$
Then Parseval's relation states that the form of $\int_{\infty}^{\infty} \chi_{1}(\omega) \chi_{2}^{+}(\omega) d\omega$

$$= \int_{\infty}^{\infty} (\chi_{1}(\omega) \chi_{2}^{+}(\omega)) dt = \frac{1}{2\pi} \int_{\infty}^{\infty} \chi_{1}(\omega) \chi_{2}^{+}(\omega) d\omega$$
Parseval's identity states
$$E = \int_{-\infty}^{\infty} (|\chi_{1}(\omega)|) dt = \frac{1}{2\pi} \int_{\infty}^{\infty} |\chi_{1}(\omega)|^{2} dt$$

$$E = \int_{-\infty}^{\infty} (|\chi_{1}(\omega)|) dt = \frac{1}{2\pi} \int_{\infty}^{\infty} |\chi_{1}(\omega)|^{2} dt$$

$$\int_{-\infty}^{\infty} \chi_{1}(t) \chi_{2}^{+}(t) = \frac{1}{2\pi} \int_{\infty}^{\infty} |\chi_{1}(\omega)|^{2} dt$$

$$\int_{-\infty}^{\infty} \chi_{1}(t) \chi_{2}^{+}(t) = \frac{1}{2\pi} \int_{\infty}^{\infty} |\chi_{1}(\omega)|^{2} \chi_{2}^{+}(t) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\chi_{1}(\omega)|^{2} \int_{\infty}^{\infty} (|\chi_{2}(t_{1})|^{2} dt) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\chi_{1}(\omega)|^{2} \int_{\infty}^{\infty} (|\chi_{2}(t_{1})|^{2} dt) d\omega$$

$$= \frac{1}{2\pi} \int_{\infty}^{\infty} |\chi_{1}(\omega)|^{2} \int_{\infty}^{\infty} (|\chi_{2}(t_{1})|^{2} dt) d\omega$$

$$= \frac{1}{2\pi} \int_{\infty}^{\infty} |\chi_{1}(\omega)|^{2} \int_{\infty}^{\infty} (|\chi_{2}(t_{1})|^{2} dt) d\omega$$

$$= \frac{1}{2\pi} \int_{\infty}^{\infty} |\chi_{1}(\omega)|^{2} |\chi_{2}(t_{1})|^{2} d\omega$$

Poissevals identity:
If
$$Z_{1}(t_{1}) = X_{2}(t_{1}) = \chi(t_{1})$$

Here Energy of the signal
 $E = \int_{-\infty}^{\infty} \chi(t_{1}) \chi^{*}(t_{1}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(\omega) \chi^{*}(\omega) d\omega$
 $= \int_{-\infty}^{\infty} \chi(t_{1}) \chi^{*}(t_{1}) \chi^{*}(t_{1}) \chi^{*}(\omega) \chi^{*}(\omega)$
Since $|\chi(t_{1})|^{N} = \chi(\omega) \chi^{*}(\omega)$
 $= \chi(\omega) \chi^{*}(\omega)$
 $\therefore U = get$
 $E = \int_{-\infty}^{\infty} |\chi(t_{1})|^{N} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\chi(\omega)|^{N} d\omega$
 $= \int_{-\infty}^{\infty} |\chi(t_{1})|^{N} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\chi(\omega)|^{N} d\omega$
Hence Proved.

Problem:
Find the fourier bransform of following
Signals
(a) Coswoot (a(t))
We know X(w) =
$$\int x(t) e^{-\int wt} dt$$

 $-\omega$
= $\int_{-\infty}^{\infty} \cos \omega_0 t (a(t)) e^{-\int wt} dt$

$$X(\omega) = F\left[e^{-t}\operatorname{Sim5tuct}\right]$$
$$= F\left[e^{-t}\left(e^{\frac{1}{5}t}-e^{-\frac{1}{5}t}\right)\right]$$

$$= \frac{1}{\lambda_{j}} \int_{-\infty}^{\infty} \left(e^{1} \left(e^{j51} - e^{-j51} \right) u(4) \right) e^{-j\omega 4t} \\ = \frac{1}{\lambda_{j}} \left[\frac{e^{-[1+j(\omega-5)]+}}{-[1+j(\omega-5)]+} - \frac{e^{-[1+j(\omega+5)]+}}{-[1+j(\omega+5)]} \right]_{0}^{\infty} \\ = \frac{1}{\lambda_{j}} \left[\frac{1}{-[1+j(\omega-5)]} - \frac{1}{-[1+j(\omega+5)]} \right] \\ = -\frac{1}{\lambda_{j}} \left[\frac{+1+j(\omega+5) - (1+j(\omega-5))}{(1+j(\omega-5))} \left(\frac{1+j(\omega+5)}{(1+j(\omega))} \right) \right] \\ = -\frac{1}{\lambda_{j}} \left[\frac{+1+j(\omega+5) - (1+j(\omega-5))}{(1+j(\omega))} \right] \\ = -\frac{1}{\lambda_{j}} \left[\frac{-\frac{1}{2} \left[\frac{5}{105} \right]}{(1+j(\omega))} + \frac{5}{5} \right] \\ = -\frac{1}{\lambda_{j}} \left[\frac{-1}{(1+j(\omega))} + \frac{5}{5} \right] \\ = -\frac{1}{\lambda_{j}} \left[\frac{(1+j(\omega))}{(1+j(\omega))} + \frac{5}{5} \right$$

Generally we have Sign tonewon as
Sign (4) =
$$\begin{pmatrix} 1 & for + > 0 \\ -1 & for + < 0 \end{pmatrix}$$

 $\int \frac{1}{1 + 1} \frac{1}{1 + 1 + 1} \frac{1}{1 + 1$

Signum function :- Sign(t)
Step: Sign(t) =
$$\begin{cases} 1 & for + 70 \\ -1 & for + <0 \end{cases}$$

Let us conside the function $e^{-\alpha(t)}$ sign(t)
 $x(t) = Sign(t)$
 $= Lt e^{-\alpha(t)}$
 $a > 0$
 $x(t) = Sign(t)$
 $= Lt e^{-\alpha(t)}$
 $a > 0$
 $x(t) = Sign(t)$
 $= Lt e^{-\alpha(t)}$
 $a > 0$
 $x(t) = \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)})$
 $y(\omega) = \int_{0}^{\infty} 2(t) e^{-5\omega t} dt$
 $= \int_{0}^{\infty} \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)}) e^{-j\omega t} dt$
 $= \int_{0}^{\infty} \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)}) e^{-j\omega t} dt$
 $= \int_{0}^{\infty} \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)}) e^{-j\omega t} dt$
 $= \int_{0}^{\infty} \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)}) e^{-j\omega t} dt$
 $= \int_{0}^{\infty} \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)}) e^{-j\omega t} dt$
 $= \int_{0}^{\infty} \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)}) e^{-j\omega t} dt$
 $= \int_{0}^{\infty} \frac{1}{2} (e^{-\alpha(t)} - e^{-\alpha(t-1)}) e^{-\alpha(t-1)} e^{-\alpha(t-1)} dt$

$$= \underset{a \neq o}{\overset{\text{L}}{=}} \left[\begin{array}{c} e^{-\frac{\omega}{\omega}} - e^{\circ} \\ -(a+j\omega) \\ -(a+j\omega) \\ \end{array} \right]$$

$$= \underset{a \neq o}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{1}{a+j\omega} \\ -(a+j\omega) \\ \end{array} \right]$$

$$= \underset{a \neq o}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{1}{a+j\omega} \\ -(a+j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{1}{a+j\omega} \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=}} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

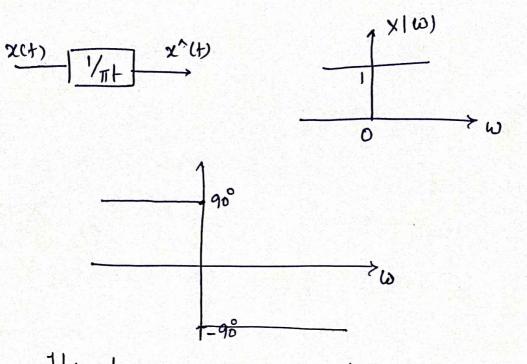
$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{3}\omega \\ -(j\omega) \\ \end{array} \right]$$

$$= \underset{-j\omega}{\overset{\text{L}}{=} \left[\begin{array}{c} \frac{2}{$$

Inhoduction to Hilbert Transform:


When the phase angles of all positive spectral components of given signal are shifted by +90° and all phase angle of negative freq spectral components are shifted by +90°, the resulting function of time is called Hilbert - transform.

The amplitude Spectrum of signal is Unchanged by Hilbert Operation, Only Phase Spectrum of Signal is Changed. The Hilbert transform $x^{2}(t)$ of a Signal x(t)is Obtained by Convolving x(t) with $\frac{1}{Tt}$ $x^{2}(t) = x(t) + \frac{1}{Tt}$ $x^{2}(t) = \frac{1}{Tt} \int_{-\infty}^{\infty} \frac{x(T)}{t-T} dT$ or $x^{2}(t) = \frac{1}{T} \int_{-\infty}^{\infty} \frac{x(t-T)}{T} dt$

The above definition of Hilbert Fransform is applicable to all Signals that are fourier transformable

The inverse Hilbert (ransform, by means of which

the Original Signal 2(1) is recovered from 92 "ct) is defined by $\mathcal{X}(4) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x^{2}(\tau)}{-1-\tau} d\tau$ The functions such and site au said to Constitute a Hilbert Iransform Pair. For Reather time fonction 1/11, We have 1 - i sgncus (from duality property) Where Sgncus, is the Signum function in the freq domain given by Sgn(w)={ | w>0 -1 w<0 Sgn(4) $\leftrightarrow \frac{2}{J\omega}$ The fourier transform $2^{\circ}(\omega)$ and $x^{\circ}(t)$ is given by $\chi(t) = \frac{1}{100} \chi(t)$ $pc^{(w)} = -j sgn(w) x(w)$ $x^{(w)} = (-jx(w) w = 0)$ = (jx(w) w < 0)

Jhis device may be considered as on one Hhat Produces a phase shift of -90° for all Positive frequency and +90° for all negative frequencies.

The amplitudes are unaffected

$$\cdot |x^{(\omega)}| = |x(\omega)|$$

Such an i'deal device colled Hibert transformer. Jt may be viewed as i'deal all pass 90° phase Shifter.

SET - 2

II B.Tech I Semester Regular Examinations, February/March 2023

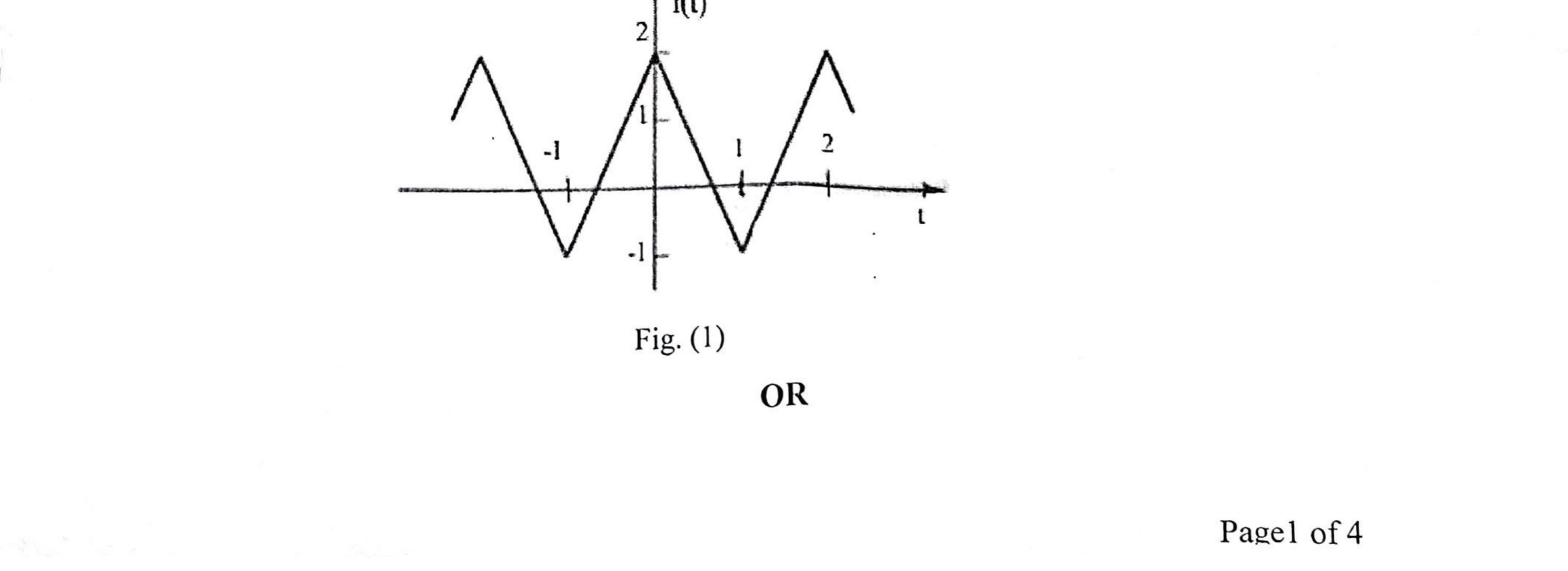
ELECTRICAL CIRCUIT ANALYSIS (Electrical and Electronics Engineering)

Time: 3 hours

Max Marks: 70

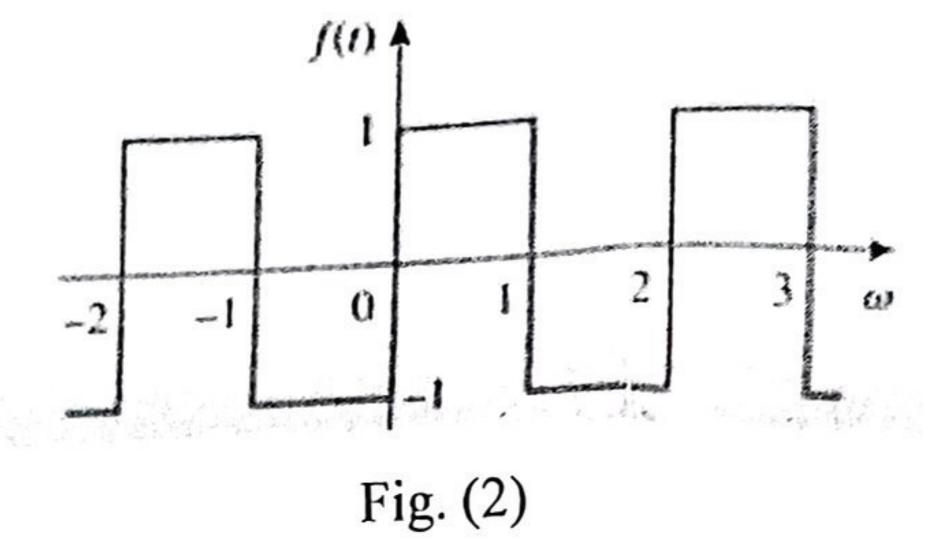
Instructions:

- 1. Question paper comprises of Part-A and Part-B
- 2. Part-A (for 20 marks) must be answered at one place in the answer book.
- 3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.


4. CO means Course Outcomes. BL means Blooms Taxonomy Levels.


PART – A

(Answer ALL questions. All questions carry equal marks)


- 1. a. Write the expression for the exponential form of the Fourier series.
 - **b.** State the Dirichlet's conditions for Fourier series.
 - **c.** What is steady state response?
 - **d.** What is the statement of composition theorm?
 - e. List out the advantages of Three-Phase system
 - f. What is mean by Dot convention in Coupled circuit
 - g. list the various ways to find the Inverse Laplace transform

- 10 * 2 = 20 Marks **CO1** [2] BL1 CO1 [2] BL2 CO2 [2] BL1 CO2 BL2 [2] BL1 CO3 [2] BL2 CO3 [2]
- [2] CO4 BL1
- BL2 What is the transfer function? h. [2] CO4 BL1 i. CO5 Why are Y-parameters called short circuit admittance parameter? [2] BL2 Write the conditions for symmetry and reciprocity for h parameters. CO5 j. [2] PART - B(Answer ALL questions. All questions carry equal marks) 5 * 10 = 50 Marks Obtain the Fourier series for the wave form shown in fig. (1). 2. [10] BL2 CO1 f(t)

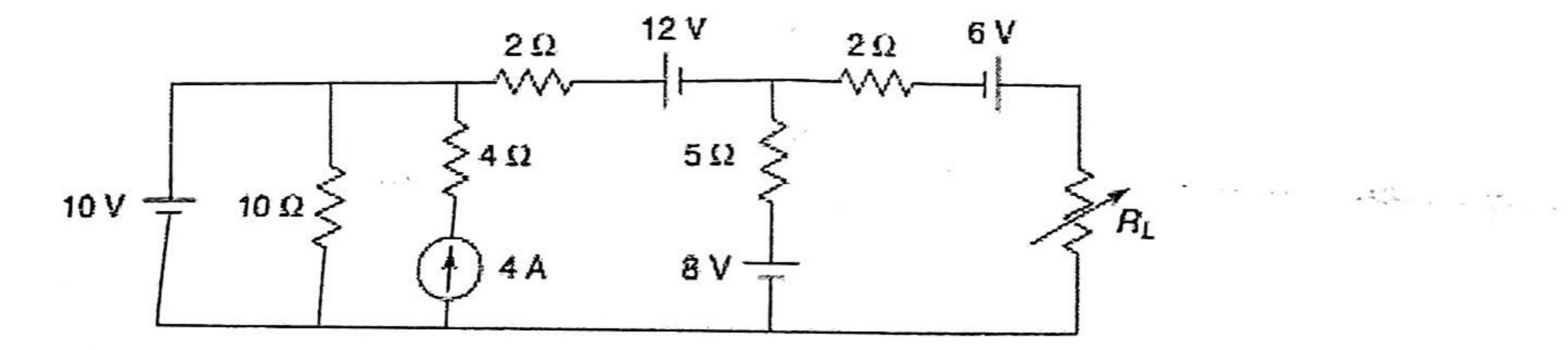
Obtain the trigonometric Fourier series for the periodic waveform shown in [10] 3. C01 BL3 fig. (2).

(a) State and explain Millman's theorem. 4.

.

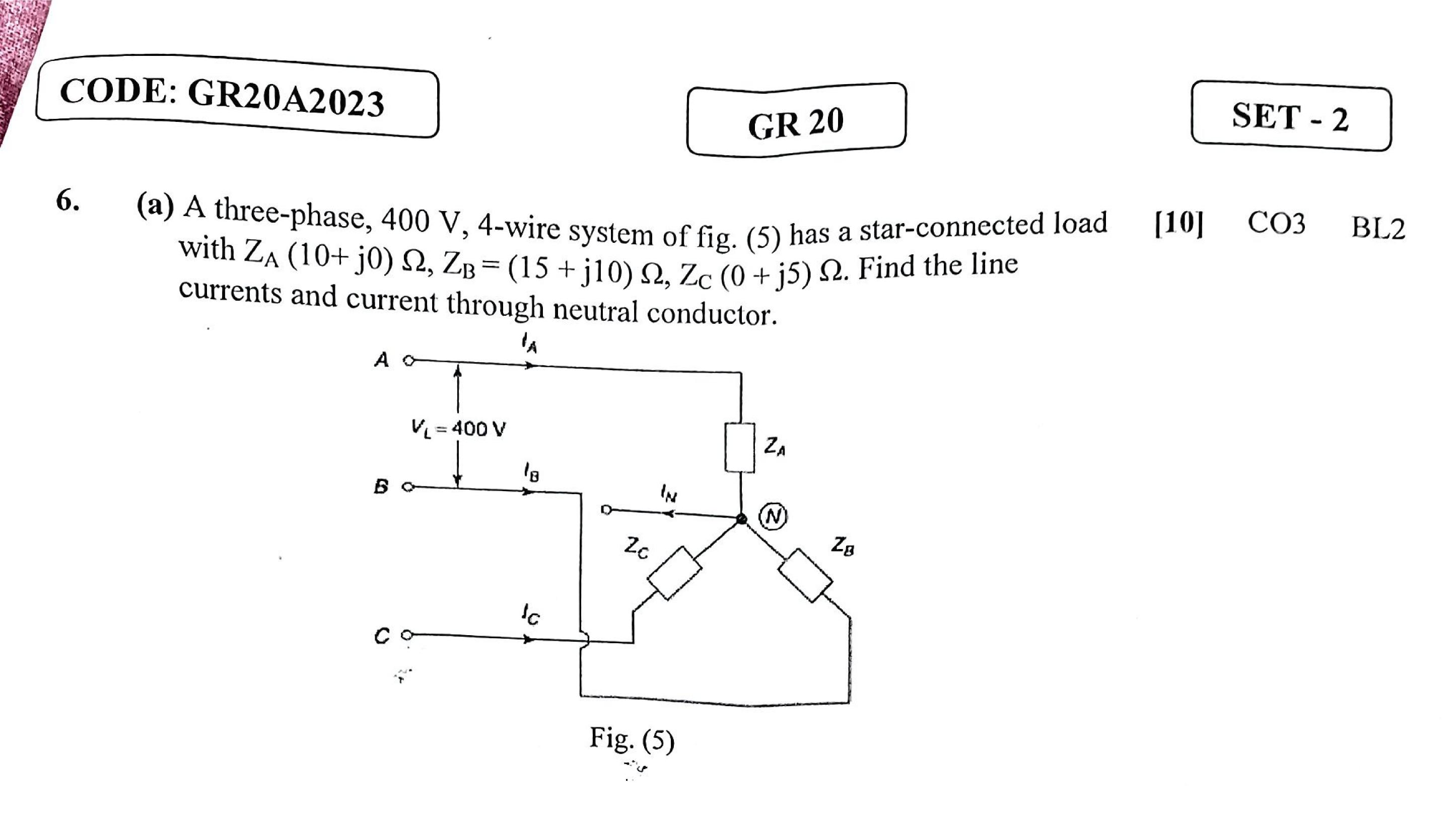
1

(b) State Telligence Theorem with one example.


OR

[10]

CO2


BL2

(a) For the network shown in Fig.(4) find the value of the resistance RL for 5. [10] CO2 BL3 maximum power transfer and calculate maximum power.

(b) State reciprocity theorem with one example.

Page2 of 4

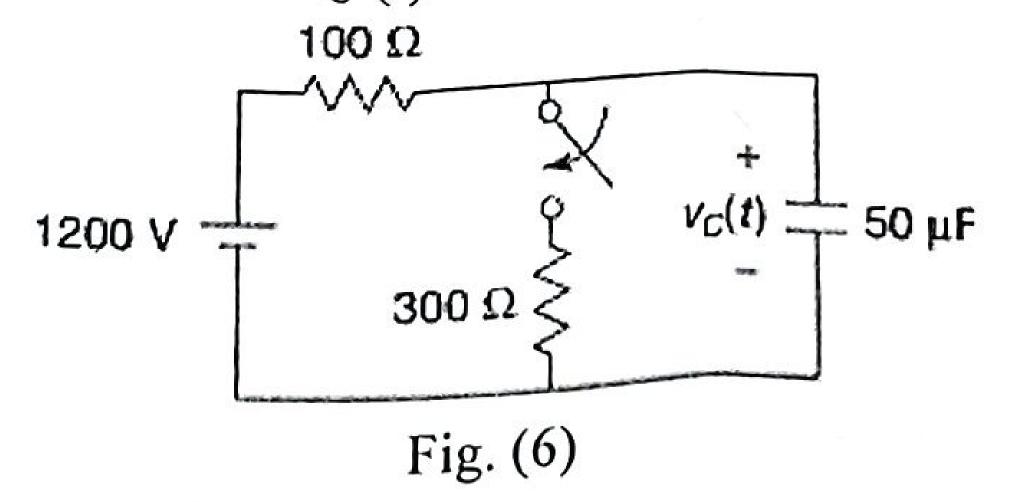
(b) Explain the procedure to measure the three phase Power by Twowattmeter Method.

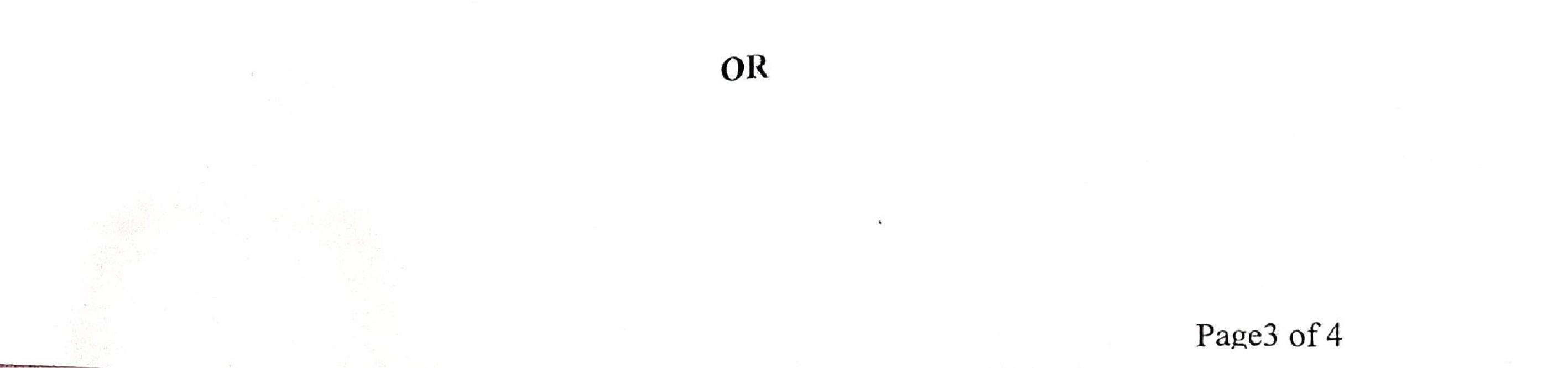
OR

(a) Derive the relationship between line and phase quantities in a 3-phase [10] CO3 BL3 delta connected system balanced delta connected system and draw the phasor diagram.

[10]

CO4


BL3


(b) A three-phase, 10 kVA load has a power factor of 0.342. The power is measured by the two-wattmeter method. Find the reading of each

wattmeter when the (i) power factor is leading, and the (ii) power factor is lagging.

8. (a) Find the Laplace transform of $\frac{e^{-\alpha t}e^{-bt}}{t}$

(b) For the network shown in Fig. (6), the switch is open for a long time and closes at t = 0. Determine $V_C(t)$.

(a) Determine the inverse Laplace transform of the given functions 9.

$$F(s) = \frac{(s+1)(s+4)(s+7)}{S(s+2)(s+5)}$$

[10] CO4 BL3

(b) In the network of Fig. (7), the switch is opened at t = 0. Find i(t)

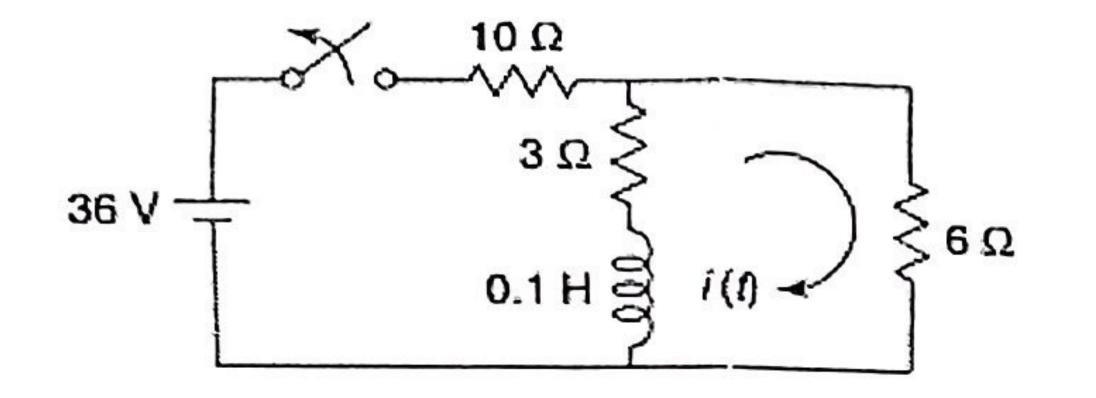
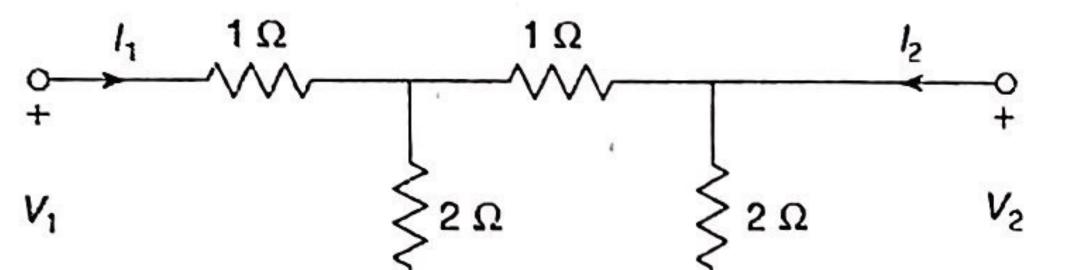
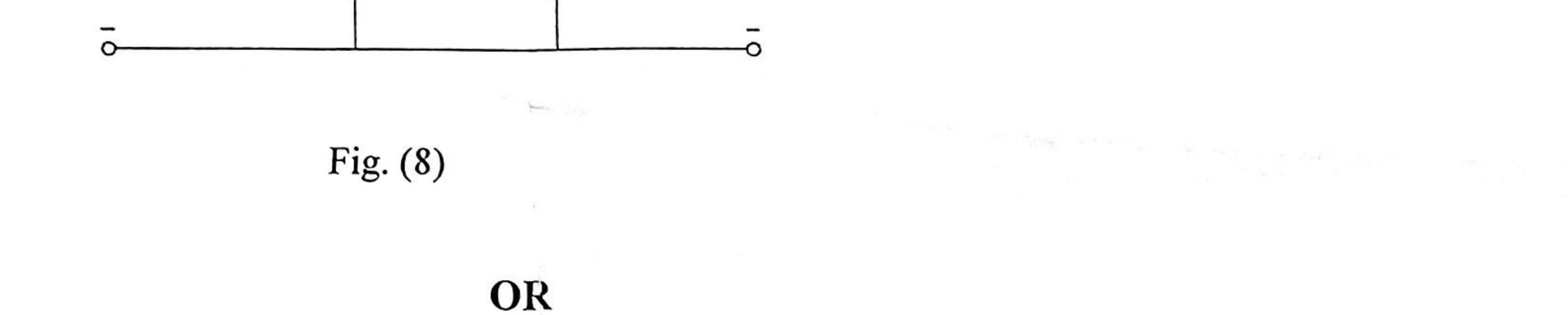
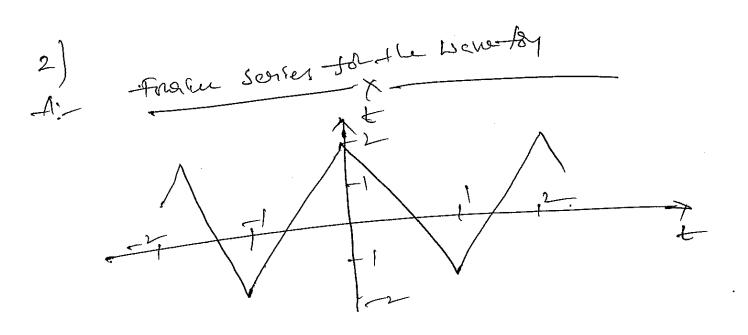
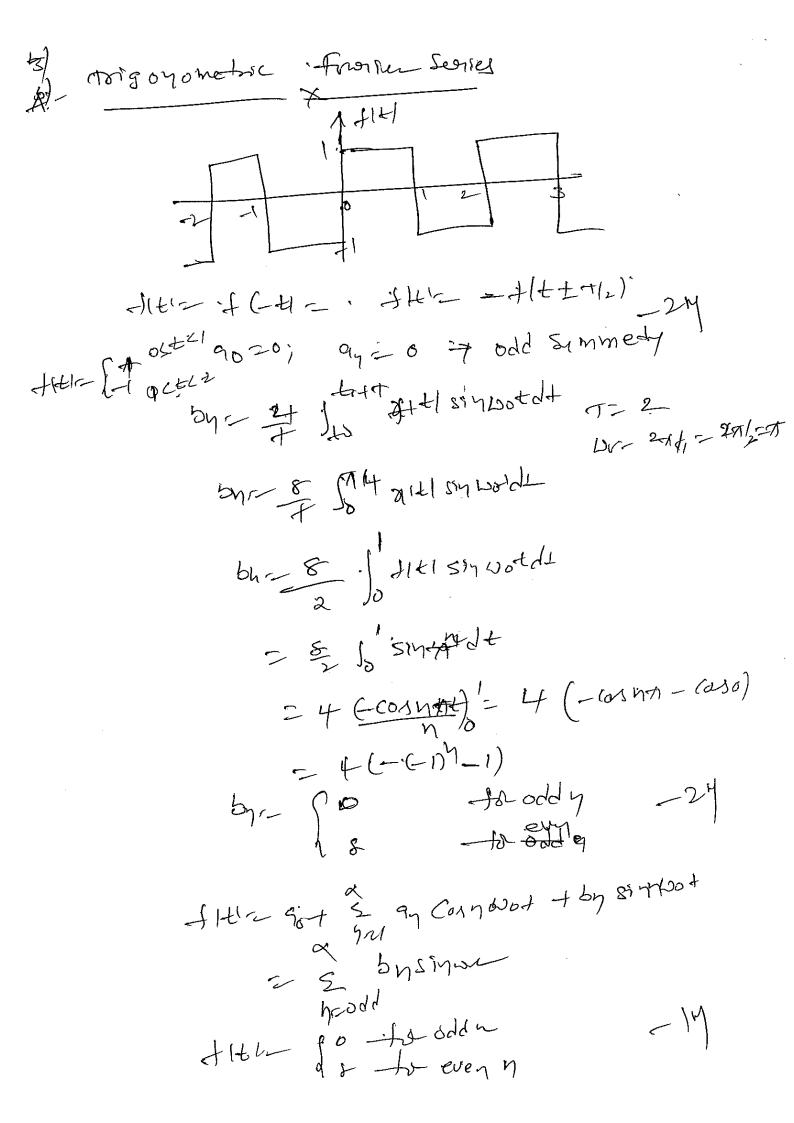




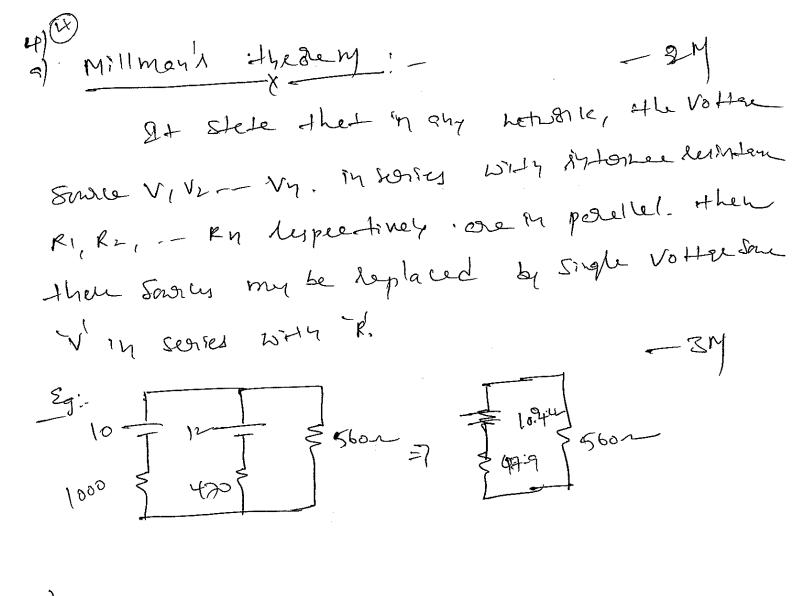
Fig. (7)

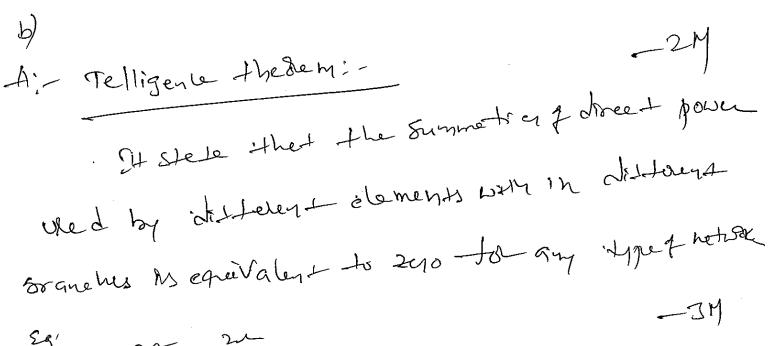
Find Z and ABCD parameters for the network shown in Fig. (8) 10.



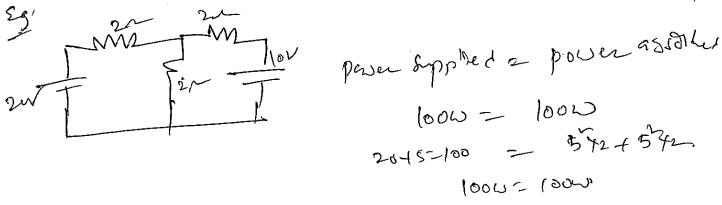
The Z parameters of a Two Port Network are $Z_{11}=10\Omega$, $Z_{22}=20\Omega$, $Z_{12}=12$ [10] BL2 11. CO5 and Z_{21} = 14 Ω Compute Y and h Parameters.

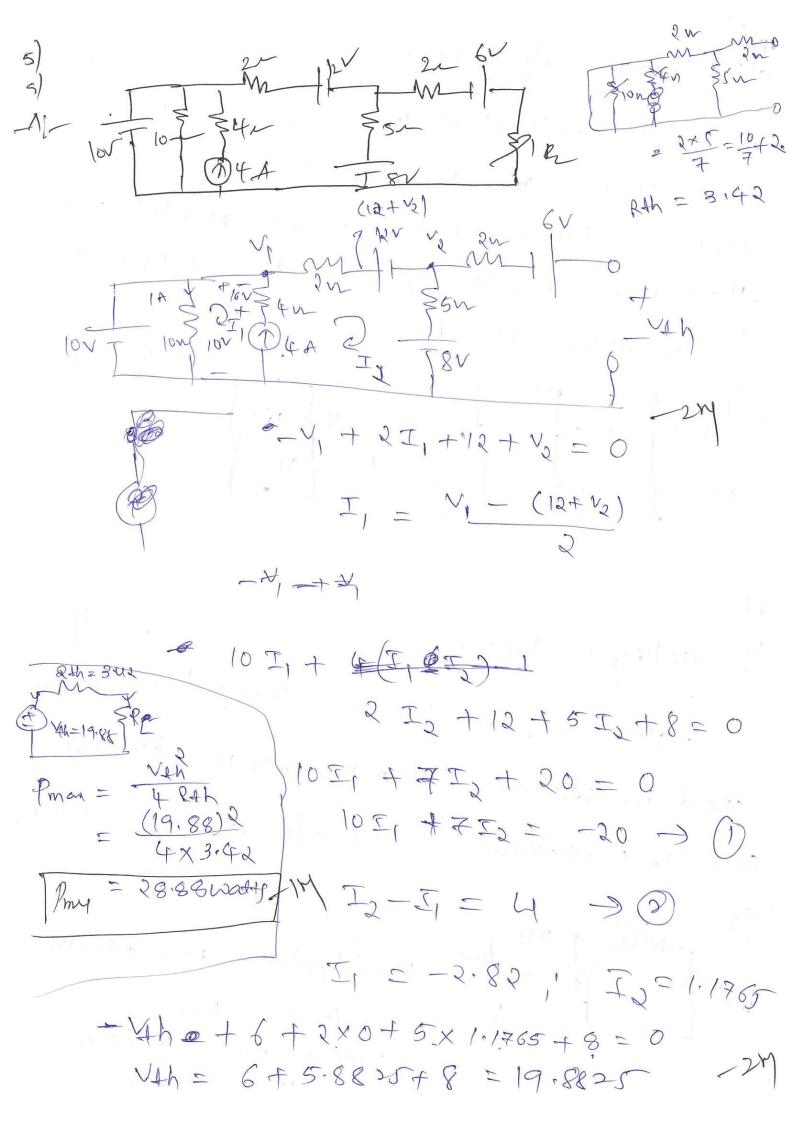

 \bigcirc

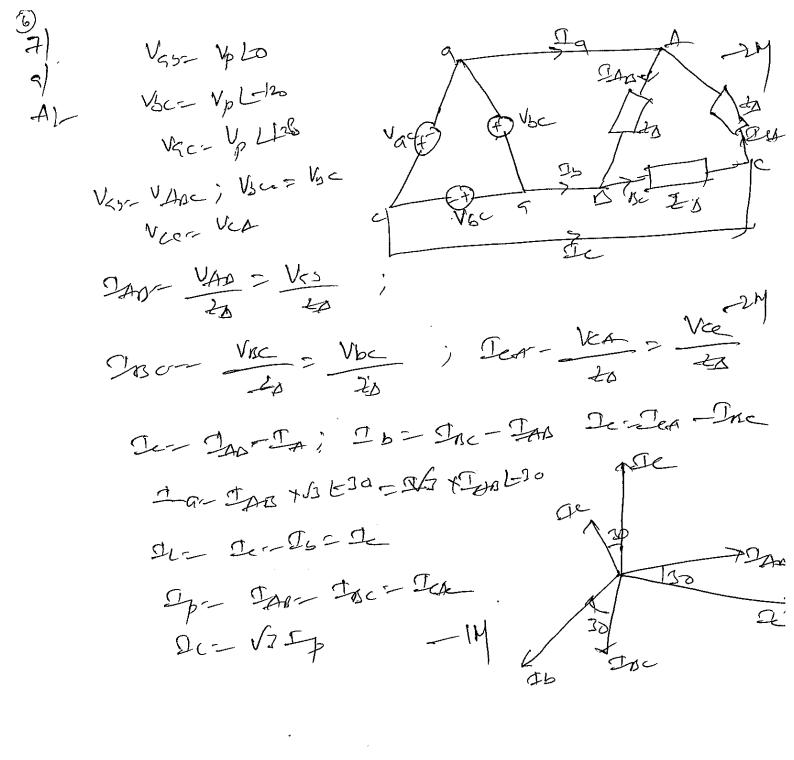


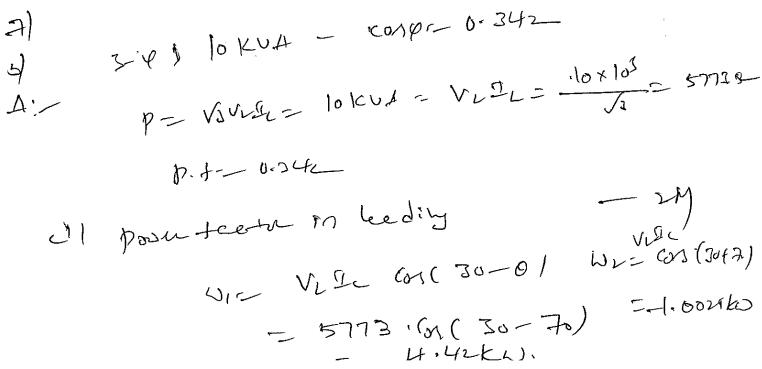

ditting
$$3462 = 1 = 1 \le t \le 0$$

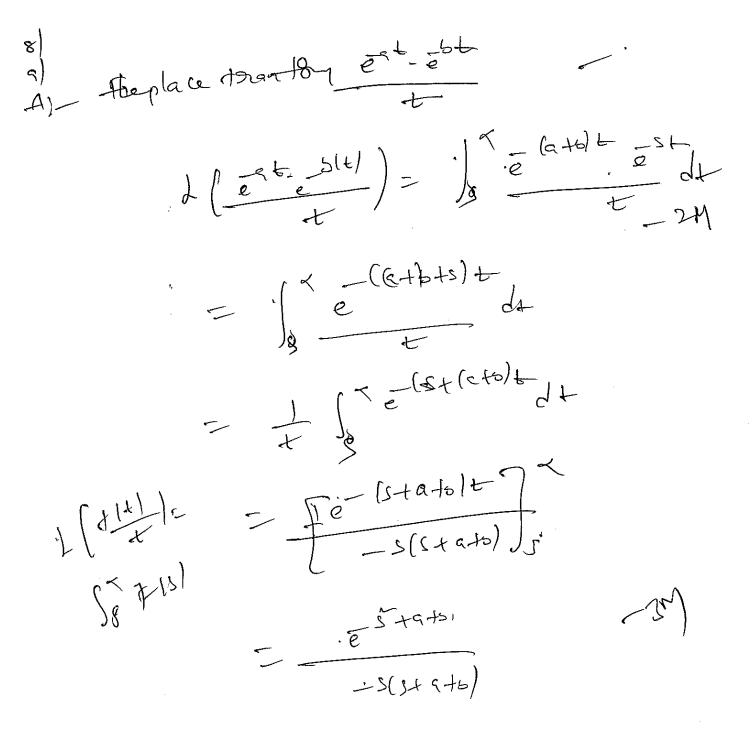
 $\ge -74t2 = -10 = 0 \le t \le 1$
 $a_{1t} = -90 + \sum_{h=1}^{\infty} a_{1} tony oot + by sint botdel
 $b_{1} = 0 = -50 = even formerly$
 $for = \frac{2}{7} \cdot \int_{0}^{1} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} = \frac{1}{5} \frac{1}{2}$
 $= \frac{2}{2} \int_{0}^{1} \frac{3}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} = \frac{1}{5} \frac{1}{2}$
 $= \frac{3}{2} \int_{0}^{1} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} = \frac{1}{5} \frac{1}{5}$
 $a_{1} = \frac{1}{2} \int_{0}^{1} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} = \frac{1}{5} \frac{$$


(3)

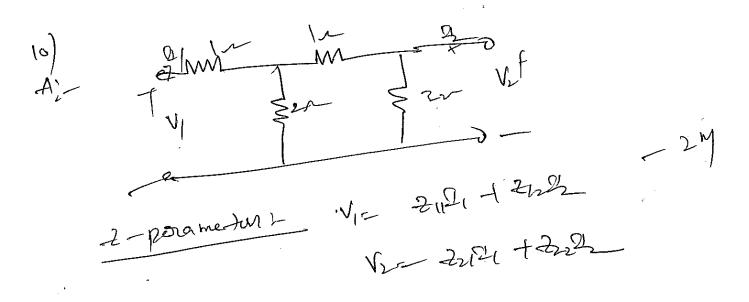

~-

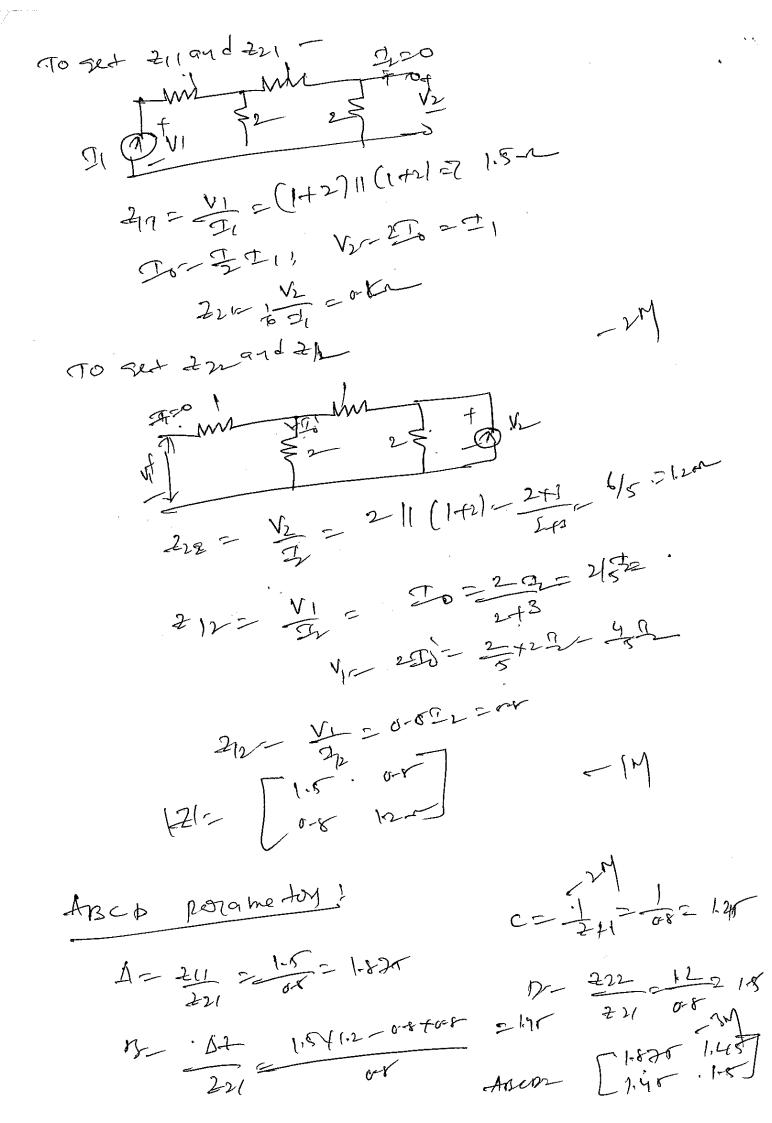





A) - Inclinere perimand bilatoral single Snorle het 2010 -11. Rate hetwerke the retio of response to the exciteting The Canters every shough the Snorce is intowhere Long upot tominen to actput tominer 10 Junio Martin 33 P A J I J. Ior 9 = 0 098mat 31 V/q - 10 = 102.04 J1- 0-058m V/g - 10 - 10204 A 1/2 V12400V H 23/X . દ) ¥ RA-- (16-1-50) A`.-70- (15+510)~ A TO OT A 20- (0+55)~ Viz 400V 40 LOA = 40+10 - IM

 $\frac{1}{1620} = \frac{1}{1600} = \frac{1}{1600} = \frac{1}{1600} = \frac{1}{1600} = \frac{1}{1800} = \frac{1$


Sec.
$$\frac{1}{100} \frac{1}{0} \frac{1}{$$



······

LESSON/ UNIT PLAN

Academic Year	: 2022-23
Semester	: II
Name of the Program:	B.Tech

Year: II

Course/Subject: Sensors Electric Circuit Analysis

Course Code: GR20A2023

Name of the Faculty: G Sandhyarani

Dept.:EEE

UNI T No.	Lesso n No.	No. of Period s	Lesson Title	Objective s	Outcom es	References (Text Book, Journal) Page Nos.:to
1	1	2	Representation of continuous-time periodic signals by Fourier series	COBJ1	CO1	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
1	2	2	Dirichlet's conditions; Properties of Fourier series	COBJ1	CO1	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
1	3	4	Parseval's theorem; Trigonometric and Exponential Fourier series;	COBJ1	CO1	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
1	4	2	Complex Fourier spectrum; Fourier transform via Fourier series;	COBJ1	CO1	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat

						rai
1	5	2	Fourier transform of periodic and aperiodic signals, Convergence of FT	COBJ1	CO1	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
1	6	2	Properties of Fourier transforms Parseval's theorem;	COBJ1	CO1	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
1	7	2	Fourier transforms involving impulse & Signum function & Hilbert Transform	COBJ1	CO1	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
2	8	2	Maximum Power Transfer theorem, Reciprocity theorem	COBJ2	CO2	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
2	9	2	Millman theorem, Compensation theorem	COBJ2	CO2	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
2	10	3	Telligence Theorem, Concept of duality and dual network	COBJ2	CO2	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai

2	11	2	Solution of first and second order differential equations for Series RL, RC, RLC circuits	COBJ2	CO2	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
2	12	3	Solution of first and second order differential equations for parallel RL, RC, RLC circuits	COBJ2	CO2	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
2	13	2	Initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.	COBJ2	CO2	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
3	14	1	Introduction to Three-phase circuits	COBJ3	CO3	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
3	15	2	Star-star, delta-delta analysis of balanced circuits of three phase 3 wire, 4 wire, delta circuits,	COBJ3	CO3	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
3	16	2	Star-star, delta-delta analysis of unbalanced analysis of three phase 3 wire, 4 wire, delta circuits	COBJ3	CO3	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
3	17	3	Measurement of power by three and two watt meters,	COBJ3	CO3	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill

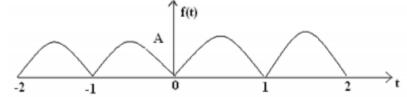
						Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
3	18	2	Measurement of reactive power by single wattmeter,	COBJ3	CO3	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
3	19	3	Mutual coupled circuits, Dot Convention in coupled circuits.	COBJ3	CO3	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
4	20	2	Review of Laplace Transform	COBJ4	CO4	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
4	21	1	Analysis of electrical circuits using Laplace Transform for standard inputs	COBJ4	CO4	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
4	22	1	Convolution integral	COBJ4	CO4	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
4	23	2	Inverse Laplace Transform	COBJ4	CO4	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

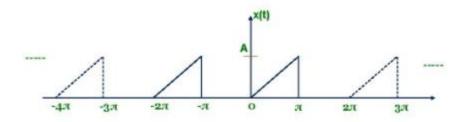
4	24	2	Transformed network with initial conditions,	COBJ4	CO4	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
4	25	2	Transfer function representation & Poles and Zeros.	COBJ4	CO4	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
5	26	2	Two Port Networks	COBJ5	CO5	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
5	27	1	Terminal pairs, relationship of two port variables,	COBJ5	CO5	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
5	28	1	Impedance & admittance parameters,	COBJ5	CO5	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
5	29	2	Hybrid and transmission parameters, condition for symmetry and reciprocity	COBJ5	CO5	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
5	30	1	Interrelationship between various parameters	COBJ5	CO5	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill

						Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai
5	31	2	Interconnections of two port networks (series, parallel and cascade)	COBJ5	CO5	W.H Hayt and J.E.kemmerly "Engineering circuit Analysis' ,MC Grawhill Ref : Circuit theory by A. Chakrabarthy ,Dhanpat rai

TEACHING AIDS : OHP PROJECTOR, WHITEBOARD, MARKER, DUSTER.

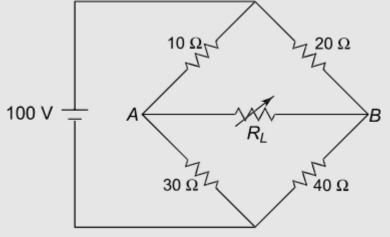


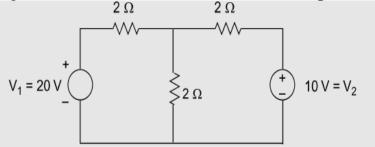
Gokaraju Rangaraju Institute of Engneering and Technology Electrical Circuit Analysis (GR20A2023) <u>ECA Assignment-I</u>


1. a) Derive the expression for Trigonometric Fourier series equation and coefficients.

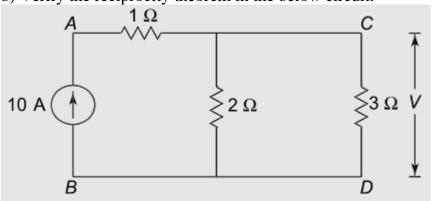
b) Derive the expression for Exponential Fourier series equation and coefficients

- 2. a) State and prove the Parseval's property or Parsavels power theorem of Fourier Series.b) State the Dirichilet's conditions for existence of Fourier series.
- **3.** a) Find the Exponential Fourier series for the rectified Sine wave as shown in figure.


b) Find the Trigonometric Fourier series for the wave form shown in figure.


- 4. a) Obtain Fourier transform through exponential Fourier series.b) State and prove the Parseval's property or Parsavel's energy theorem of Fourier transform.
- 5. a) Find the Fourier transform of $x(t) = e^{-2t} \cos 5t u(t)$ b) Find the Fourier transform of $x(t) = \cos \omega_0 t u(t)$
- 6. a) List out the properties of Fourier series.b) List out the properties of Fourier transform.

1. a) State maximum power transfer theorem.


b) Determine the load resistance to receive maximum power from the source; also find the maximum power delivered to the load in the circuit shown in below figture.

- 2. a) State Tellegen's theorem.
 - b) Verify Tellegen's theorem in the network shown in below figure

3. a) State reciprocity theoremb) Verify the reciprocity theorem in the below circuit.

4. a) State Millman's theoremb) Find the current I_L. Use Millman's theorem.

1. A balanced delta connected load of (8+j6) ohms per phase is connected to a 3-phase, 50Hz, 230V supply. Calculate

- a. line current
- b. Power factor
- c. Reactive volt-ampere and
- d. Total volt-ampere

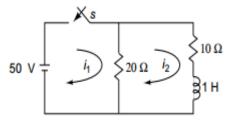
2. Derive the relationship between line and phase quantities in a 3-phase delta connected

system balanced delta connected system and draw the phasor diagram.

3. Explain the measurement of three phase power by two wattmeter method

4. Two wattmeter's are used to measure power in a 3-phase three wire load. Determine the total power, power factor and reactive power, if the two wattmeter's read i) 1000W each, both positive ii) 1000W each, but of opposite sign.

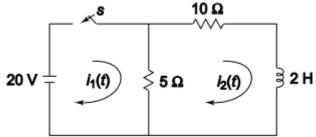
5. A balanced star-connected load of (4 + J3) W per phase is connected to a balanced 3-phase 400 V supply. The phase current is 12 A. Find (i) the total active power (ii) reactive power and (iii) total apparent power.


6. A balanced delta-connected load of (2 + j3) W per phase is connected to a balanced three-phase 440 V supply. The phase current is 10 A. Find the (i) total active power (ii) reactive power and (iii) apparent power in the circuit.

7. The two wattmeter method is used to measure power in a threephase load. The wattmeter readings are 400 W and -35 W. Calculate (i) total active power (ii) power factor, and (iii) reactive power

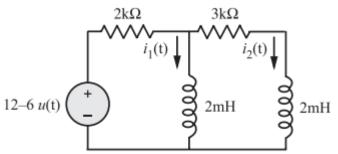
8. Define Coefficient of Coupling. What is the significance of Dot Convention?

9. Define Mutual Inductance and self-inductance.

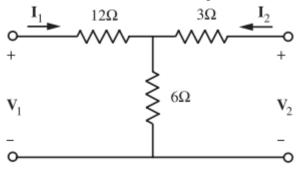

1. In the circuit shown in Figure, obtain the equations for $i_1(t)$ and $i_2(t)$ when the switch is closed at t = 0.

2. Determine the inverse Laplace transform of the given functions

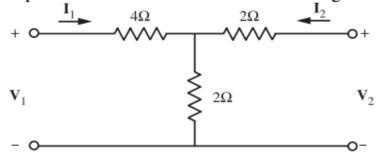
(*i*)
$$F(S) = \frac{s-3}{s^2+4s+13}$$
 (*ii*) $F(S) = \frac{s^2+12}{s(s+2)(s+3)}$


3. For the circuit shown in Fig. determine the current in the 10 W resistor when the switch is closed at t = 0. Assume initial current through the inductor is zero

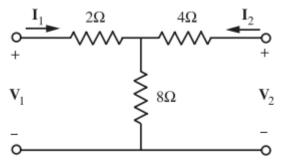
4. Find the inverse Laplace transform of 2 + 2

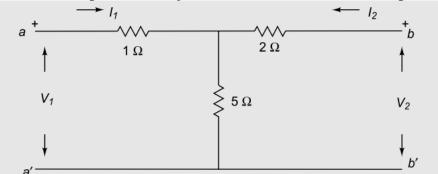

$$F(S) = \frac{s^2 + 2s + 5}{(s+3)(s+3)^2}$$

5. Find $i_1(t)$ and $i_2(t)$ for t > 0 for the circuit shown in Fig. using Laplace transform.



6. Define Transfer function


- 1. The Z parameters of a Two Port Network are $Z_{11}=6\Omega$, $Z_{22}=4\Omega$, $Z_{12}=Z_{21}=3\Omega$ Compute Y and ABCD Parameters.
- 2. Find the z parameters of this circuit shown below Figure.


3. Determine the admittance parameters of the T network shown in Fig.

4. Find the hybrid parameters for the two-port network shown in Fig.

5. Find the transmission or general circuit parameters for the circuit shown in Fig.

6. Write the conditions for reciprocity and symmetry conditions for all parameters

as compared to the single price surring 7 the site of 3-6 system operated machine intenthy The meetine operated at the votre 7 poly phase surper producty power of Canton careigh -7 3-6 mlcs are len costy and mode efficient +) pot convertion in coupled circuits:- -24 Az pot convertion in X I It both corleges enter the dotted ents q coupled coils a 12 both corres enter undotted ends, they the sign of motive inducting le will be Rame there 3) Al-Advantages 7 Leplace Asanothonic - 21 Al-Advantages 7 Leplace Asanothonic - 21 -> thet its converts on obs into an algebraic energy g the same giden that in simpler to sole, even though it was toned of complex variable: - y solving linear open tollows from the leads the ex ponentiel function is an guil systemy At Leplace Asianston q Unit Samp Signel! - 21 $g_{1} \downarrow_{1} = t_{u} \downarrow_{1} ; \quad f_{u} \downarrow_{1} = f_{u} \downarrow_{1} \downarrow_{1} \downarrow_{1} \downarrow_{1} = f_{u} \downarrow_{1} \downarrow_{1} \downarrow_{1} \downarrow_{1} \downarrow_{1} \downarrow_{1} = f_{u} \downarrow_{1} \downarrow_$ 2- perlametus =7 211 = 222 - M È) Symmetry in Y = porameter = 2 411 = 422 - 14

1. Anse p personnetwin
$$v_{p-1} + v_{2-1} + SI_2 - Iy$$

 $I_{1/2} = CV_2 + DD_2 - IM$
 $I_{1/2} = CV_2 + DD_2 - IM$
 $V_{p-1} + V_2 + SI_2 - IM$
 $V_{p-1} + DD_2 - IM$
 $V_{p-1} + DD_$

100= 502+ 0-2 di/d6+ -1 50+106 Side

$$\begin{bmatrix} \log 2 - 50^{\circ} + 0^{\circ} 2 \frac{\pi i}{dt} + \frac{1}{s_{1} + 16} \int^{1} dt \\ dt + \log 4 \int^{1} dt + \log 4 \int^{1$$

$$\begin{aligned} \Pi_{N-1} &= \left(\Pi_{A} + \int_{A} \int_{A}$$

$$s(b) = \int_{0}^{b} \int_{0}^{$$

$$\begin{aligned} \begin{array}{c} \exists lsl_{2} \cdot \underbrace{\sqrt{l}}_{2} \\ & \exists lsl_{2} \cdot \underbrace{\sqrt{l}}_{2} \\ & \exists lsl_{2} \cdot \underbrace{\sqrt{l}}_{2} \cdot \underbrace{(l \cdot e^{-1}e^{-$$

b)
b)
c)
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1$

$$\begin{aligned} T_{17} = T_{42} = 35 \\ T_{17} = T_{42} = 535 \\ V_{17} = V_{18} + V_{18} = (2 ||x + 2 ||5) T_{1} + (2 ||2 + 2 ||2$$

2= 7+3

.

II B. Tech I Semester Supplementary Examinations, August/September 2023

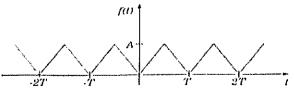
GR 20

ELECTRICAL CIRCUIT ANALYSIS (Electrical and Electronics Engineering)

Time: 3 hours

Instructions:

3.


- 1. Question paper comprises of Part-A and Part-B
- 2. Part-A (for 20 marks) must be answered at one place in the answer book.
- 3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.
- 4. CO means Course Outcomes. BL means Blooms Taxonomy Levels.

PART – A (Answer ALL questions. All questions carry equal marks)

		10 *	* 2 = 20	Marks
1. a.	Define Fourier Transform.	[2]	CO1	BL1
b .	What is the Fourier transform of eas?	[2]	COI	BL2
с.	Write the statements of compensation theorem.	[2]	CO2	BLI
d.	What are initial conditions?	[2]	CO2	BL2
e.	What are the benefits of three phase system?	[2]	CO3	BL1
f.	Define Dot convention in coupled circuits.	[2]	CO3	BL2
g.	What are the advantages of Laplace transform over differential equations.	[2]	CO4	BLI
h.	What is the Laplace transform of unit ramp signal?	[2]	CO4	BL2
i.	What are the conditions for symmetry in terms of Z and Y parameters?	[2]	CO5	BL1
j.	What are the defining equations of ABCD parameters?	[2]	CO5	BL2

PART – B (Answer ALL questions. All questions carry equal marks)

2. Find the Trigonometric Fourier series of the following signal.

OR

[10] CO1 BL3

(a) Explain the properties of Fourier Transform(b) Briefly explain about Parsevel's theorem.

5 * 10 = 50 Marks [10] CO1 BL2

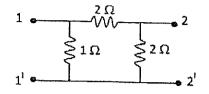
Pagel of 3

Scanned with CamScanner

SET - 2

Max Marks: 70

					Ũ
CO	DE: GR20A2023 GR 20		SET -	2	
4.	State and explain the maximum power transform theorem with an example.	[10]	C02	BL3	
	OR				
5.	A series RLC circuit has $R = 50 \Omega$, $L = 0.2H$ and $C = 50 \mu F$ constant voltage of 100 V is impressed upon the circuit at $t = 0$. Find the expression for the transient current assuming initially relaxed conditions.	[10]	CO2	BL3	
6.	 (a) Derive the relation between phase and line values in a 3-phase balanced star connected system with neat circuit diagram. (b) An unbalanced four wire, star connected load has a balanced voltage of 400 V, the loads are: Z₁= (4+j16) Ω, Z₂= (5+j20) Ω, Z₃= (8+j4) Ω. Calculate the: (i) The line currents. (ii) Current in the neutral wire and (iii) The total power. 	[10]	CO3	BL3	
	OR				
7.	(a) Derive the relationship between phase values of voltage and current for balanced delta connected system	[10]	CO3	BL2	
	(b) Determine the power factor and the input power for a circuit with $v = 50$ sin (ωt +60) and I = 2 sin (ωt +100) A.				
8.	 (a) Fin the laplace transform of the following functions (i) f(t) = 3cos(6t) (ii) f(t) = sin(t) + sin(3t) 	[10]	CO4	BL3	
	(b) Deermine the inverse Laplace transform of the following				
	i. $F(s) = \frac{10}{s(s+1)(s+10)}$				
	ii. $F(s) = \frac{3s+2}{s^2+4s+20}$				

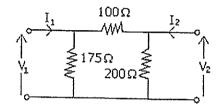

- OR
- 9. Derive an expression for the current response in R-L series circuit with a [10] CO4 BL3 sinusoidal source using Laplace transform.

Scanned with CamScanner

CODE: GR20A2023

(a) Find the transmission parameters for the resistance network shown in [10] CO5 BL3 figure below.

GR 20


(b) Briefly explain the relation between Z and Y parameters

OR

11. (a) Find the y-parameters of the network shown in figure.

[10] CO5 BL3

SET - 2

(b) Explain the interconnection of two port networks when connected in series.

Page3 of 3 Scanned with CamScanner

N

II B.Tech I Semester Regular Examinations, February 2022

Electric Circuit Analysis

(Electrical and Electronics Engineering)

Time: 3 hours

Instructions:

Max Marks: 70

1. Question paper comprises of Part-A and Part-B

- 2. Part-A (for 20 marks) must be answered at one place in the answer book.
- 3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

PART – A

(Answer ALL questions. All questions carry equal marks)

10 * 2 = 20 Marks

			1	1
1. a.	State the Dirichlet's conditions for existence of Fourier series.	[2]	CO1	BL1
b.	State and prove the Parseval's property or Parsavel's energy theorem of Fourier transform.	[2]	CO1	BL1
c.	State Millman theorem.	[2]	CO2	BL1
d.	What are the time constants for series RL and RC Circuits	[2]	CO2	BL2
e.	Write the relationship between line and phase quantities in a 3 phase delta balanced connected system.	[2]	CO3	BL2
f.	Write the expression for active power and reactive power in a balanced 3 phase circuit?	[2]	CO3	BL2
g.	Sate the convolution integral property.	[2]	CO4	BL1
h.	Define the transfer function.	[2]	CO4	BL1
i.	What is symmetry condition of Y and ABCD Parameters?	[2]	CO5	BL2
j.	Write the conditions for reciprocity of Z and h parameters.	[2]	CO6	BL2
	PART – B			1
	(Answer ALL questions. All questions carry equal marks)	* 10	= 50 M	arks
2.	(a) Find the Exponential Fourier series for the rectified Sine wave as shown in Figure (1). A $f(t)$ -2 -1 0 1 2 t Figure (1)	[10]	C01	BL3
	OR			
	UK			

CODE: GR20A2023

GR20

SET - 1

3.	(a) Find the Fourier transform of $x(t) = Cos\omega_0 t u(t)$	[10]	CO1	BL3
	(b) List out the properties of Fourier transform.			
4.	(a) Determine the load resistance to receive maximum power from the source; also find the maximum power delivered to the load in the circuit shown in below Figure (2). $100 V = \frac{10 \Omega r}{R_L} = \frac{20 \Omega}{R_L}$	[10]	CO2	BL2
	Figure (2)			
	OR			
5.	(a) State Reciprocity theorem with one example.	[10]	CO2	BL2
5.	(a) State Recipiontly theorem with one example.(b) Draw the dual network for the given network shown in Figure (3)	[10]	02	BL2
	$10 \text{ V} \xrightarrow{\text{5} \text{H}} \text{5} \xrightarrow{\text{5} \text{F}} \text{1} \Omega$			
	Figure (3)			
6.	(a) Derive the relationship between line and phase quantities in a 3-phase delta connected system balanced delta connected system and draw the phasor diagram.	[10]	CO3	BL3
	(b) A balanced delta connected load of (8+j6) ohms per phase is connected to a 3-phase, 50Hz, 230V supply. Calculate			
	a. line current			
	b. Power factor			
	c. Reactive volt-ampere and			
	d. Total volt-ampere			
	OR	1		
	011			

CODE: GR20A2023

GR20

8.	 (b) Two wattmeter's are used to measure power in a 3-phase three wire load. Determine the total power, power factor and reactive power, if the two wattmeter's read i) 1000W each, both positive ii) 1000W each, but of opposite sign. (a) In the circuit shown in Figure(4), obtain the equations for i₁(t) and i₂(t) 	[10]	CO4	BL3
	(a) In the chean shown in Figure(4), obtain the equations for $f_1(t)$ and $f_2(t)$ when the switch is closed at $t = 0$. 50 V $\int_{i_1}^{i_2} 20 \Omega \int_{i_2}^{i_2} 10 \Omega$ Figure(4)			DE S
	OR			
9.	(a) Determine the inverse Laplace transform of the given functions (i) $F(S) = \frac{s-3}{s^2+4s+13}$ (ii) $F(S) = \frac{s^2+12}{s(s+2)(s+3)}$	[10]	CO4	BL3
	$s^2 + 4s + 13$ $s(s+2)(s+3)$			
10.	(a) The Z parameters of a Two Port Network are $Z_{11}=6\Omega$, $Z_{22}=4\Omega$, $Z_{12}=Z_{21}=3\Omega$ Compute Y and ABCD Parameters.	[10]	CO5	BL3
	OR	•	L	
11.	(a) Find hybrid parameters for the network shown below Figure (5). 2Ω 3Ω 0 0 0 0 0 0 0 0 0 0	[10]	CO5	BL3
	Figure (5)			

II B.Tech I Semester Supplementary Examinations, February/March 2023

GR 18

ELECTRICAL CIRCUIT ANALYSIS (Electrical and Electronics Engineering)

Time: 3 hours

Instructions:

Max Marks: 70

- 1. Question paper comprises of Part-A and Part-B
- 2. Part-A (for 20 marks) must be answered at one place in the answer book.
- 3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

PART – A

	(Answer ALL questions. All questions carry equal marks)	
	10	* 2 = 20 Marks
1. a.	State Thevinens theorem.	[2]
b.	Define reciprocity theorem.	[2]
c.	What is the steady state response?	[2]
d.	Define the term 'Time constant' of a circuit, in general.	[2]
e.	Solve (8+6i)*(4+3i) and express the result in rectangular form.	[2]
f.	Show mathematically, the power in a pure inductive AC circuit is equal to zer	ro. [2]
g.	Define Q-Factor of a series circuit.	[2]
h.	What are the advantages of initial conditions?	[2]
i.	What are the defining equations of Z parameters?	[2]
j.	Express Y parameters in Z parameters.	[2]

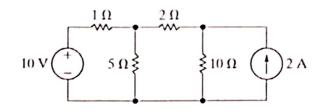
PART – B (Answer ALL questions. All questions carry equal marks)

5 * 10 = 50 Marks

2. (a) Using Theremins' theorem reduce the circuit into equivalent circuit and find the [10] voltage.

(b) Explain Millmans theorem with an example.

CODE: GR18A2023


5.

GR 18

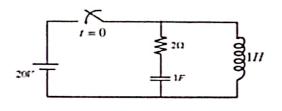
SET - 2

[10]

3. (a) Verify Superposition principle for the circuit shown in figure

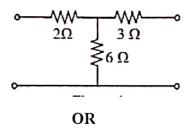
- (b) Explain the Maximum power transfer theorem when the load is an impedance with fixed resistance and variable inductance.
- (a) In a series RLC circuit, R=6 ohms, L=2 H, C=2 F. A DC voltage of 50 V is applied [10] at t=0. Obtain the expression for i(t) using differential equation approach.
 - (b) Derive the expression for current in a series RC circuit excited by a sinusoidal source V=Vm Sinωt

OR

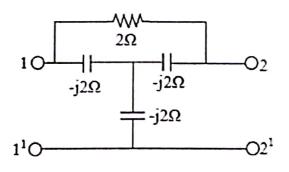

- (a) A series RLC circuit has $R = 50 \Omega$, L = 0.2H and $C = 50 \mu$ F constant voltage of [10] 100V is impressed upon the circuit at t = 0. Find the expression for the transient current assuming initially relaxed conditions.
 - (b) Find the expression for the transient current for a RL series circuit with DC input.
- 6. (a) Derive Average value, RMS value, Form factor and Peak factor for a sinusoidal [10] waveform.
 - (b) A capacitor of 100mF is connected in series with resistor of 50 W. The combination is connected across a 230 V, 50 Hz a.c. supply. Calculate the (i) impedance, (ii) current (iii) power factor and (iv) active power.

OR

- (a) A coil of resistance 40 W and inductance 0.75 H forms part of series circuit for [10] which the resonant frequency as 55 Hz if the supply is 250 V, 50 Hz. Find
 (i) line current, (ii) power factor and (iii) voltage across coil.
 - (b) What is an Ideal Transformer? Explain.


CODE: GR18A2023

8. For the circuit shown in Fig, determine the current delivered by the source when the [10] switch is closed at t=0, using Laplace transformation. Assume there is no initial charge on the capacitor and no initial current though the inductor.



OR

- 9. Briefly explain series and Parallel resonant circuits and derive the expression for [10] resonant frequency.
- 10. (a) Express hybrid parameters as a function of transmission parameters.[10]
 - (b) Find the hybrid parameters of the network shown in Figure

11. (a) Find y parameters for the circuit shown

(b) Find the equivalent parameters when two port networks are connected in series.

[10]

Gokaraju Rangaraju Institute of Engineering & Technology

II B.Tech I Sem (EEE) Result Analysis

Academic Year: 2022-23

Total No. of Students Registered: 69

Compa	Total No.	Total No. of	No. of							
Course	of Students appeared	Students Passed	Students Failed	GP (10)	GP (9)	GP (8)	GP (7)	GP (6)	GP (5)	
VEGC	69	67	02	20	33	09	03	01	01	
CI	69	67	02	14	22	19	09	02	01	
ECA	69	50	19	00	03	04	14	17	12	
PAE	69	66	03	01	14	24	13	10	04	
DCMT	69	57	12	00	00	06	15	20	16	
EMF	69	57	12	00	02	11	19	18	07	
JPE	69	66	03	00	05	23	22	11	05	
PAE Lab	69	65	04	16	09	15	13	07	05	
DCMT Lab	69	60	09	06	09	08	08	18	11	
PGT	69	65	04	00	02	15	30	13	05	

Arrears Position – II year / I Semester

No.o f stude nts	All Pass	One Arrear	Two Arrears	Three Arrears	More than three arrears	Overall % of pass
69	46	07	07	04	05	66.67%

Performance overall Class Three Toppers

ROLL NO.	NAME	SGPA
	Siripuram Manisree	
21241A0257		8.93
	Divya Namani	
22245A0202		8.50
	Palleti Sri Padma Latha Reddy	
21241A0245		8.40

SEC TIO	Courses	VEGC	CI	ECA	PAE	DCMT	EMF	JPE	PAE LAB	DCMT LAB	PGT
N	Course codes	GR20A200 2	GR20A200 3	GR20A202 3	GR20A202 4	GR20A202 5	GR20A202 6	GR20A202 8	GR20A202 9	GR20A2030	GR20A203 3
	TOTAL	69	69	69	69	69	69	69	69	69	69
	PASS	67	67	50	66	57	57	66	65	60	65
	PASS(%)	97.1	97.10	72.46	95.65	82.60	82.60	95.65	94.20	86.95	94.20
А	F ACUL TY NAME	M. Prashanth	D. Karuna Kumar	G Sandhya Rani	P Ravi Kanth	Dr B Phaneendra Babu	Dr T Suresh Kumar		U. Vijaya Lakshmi/ M. Prashanth	V. Vijayarama Raju/ M. Rekha	V. Vijayarama Raju
	FACUL TY ID	1279	760	888	1178	1563	1494		692/1279	361/933	361

II B.Tech - I Sem (EEE)

Class coordinator

HOD, EEE

Gokaraju Rangaraju Institute of Engineering & Technology

III B.Tech I Sem (EEE) Result Analysis

Academic Year: 2021-22

Total No. of Students Registered: 131

Commo	Total No.	Total No. of Students Passed	No. of Students Failed	Count of Students with Grade Point						
Course	of Students appeared			GP (10)	GP (9)	GP (8)	GP (7)	GP (6)	GP (5)	
SS	131	122	9	23	42	29	16	8	4	
PS-I	131	126	5	3	21	44	39	16	3	
PE	131	124	7	20	16	26	40	20	2	
MC	131	124	7	12	12	29	38	31	14	
AIT	59	56	3	7	20	16	8	2	3	
WSES	72	70	2	6	36	20	8	00	00	
PS-I Lab	131	129	02	58	63	49	13	3	1	
PE Lab	131	129	02	52	44	21	12	00	00	
MC Lab	131	129	02	44	56	19	5	3	2	
FME	131	127	04	2	14	51	42	17	1	
Cloud	131	84	47	00	1	1	31	47	4	
Computi										
ng (MOOCs)										

Arrears Position - III year / I Semester

No.of students	All Pass	One Arrear	Two Arrears	Three Arrears	More than three arrears	Overall % of pass
131	120	04	00	01	06	91.603%

Performance overall Class Three Toppers

ROLL NO.	NAME	SGPA
19241A0204	Aggarapu Siri	9.24
19241A0210	Ch. Sindhu	9.20
19241A0287	Nagilla Anjali	9.12

Class coordinator

III B.Tech - I Sem (EEE)

SEC	Course s	SS	PS-I	PE	MC	AIT	WSES	PS-I LAB	PE LAB	MC LAB	FME	Cloud Computi ng (moocs)
TIO N	Course codes	GR18 A2052	GR18 A3013	GR18 A3014	GR18 A3015	GR18 A301 6	GR18 A3017	GR18 A3020	GR18 A3021	GR18A 3022	GR18 A3115	GR18A60 12
	TOTAL	64	64	64	64	64	64	64	64	64	64	64
	PASS	58	60	58	58	62	63	63	63	63	61	43
	PASS(%)	90.625	93.75	90.625	90.625	96.87 5	98.437	98.437	98.437	98.437	95.312	67.187
A	FACU LTY NAME	R. Anil Kumar	V Vijaya Rama Raju	Dr T Suresh Kumar	Dr D Ravee ndhra	Dr P Sri Vidya Devi	Dr Pakkir aiah B	G Sandh ya Rani/V Usha Rani	Dr. Pakkir aiah B / Y Satyav ani	Dr.P Sri Vidya Devi /P Prashan th Kumar	K. Sunil Kumar	U. Vijaya Lakshmi
	FACU LTY ID	657	361	1494	1605	931	1593	888/10 45	1593/7 88	931/105 5		692
	TOTAL	67	67	67	67	67	67	67	67	67	67	67
	PASS	64	66	66	66	66	66	66	66	66	66	41
	PASS(%)	95.522	98.507	98.507	98.507	98.50 7	98.507	98.507	98.507	98.507	98.507	61.194
В	FACU LTY NAME	R. Anil Kumar	V Vijaya Rama Raju	Dr T Suresh Kumar	P Prasha nth Kumar	Dr P Sri Vidya Devi	Dr Pakkir aiah B	G Sandh ya Rani/V Usha Rani	D Karuna Kumar /Y Satyav ani	Dr.P Sri Vidya Devi /P Prashan th Kumar	K. Sunil Kumar	U. Vijaya Lakshmi
	FACU LTY ID	657	361	1494	1055	931	1593	888/10 45	760/78 8	931/105 5		692

Class coordinator

IV B.Tech I Sem (EEE) Result Analysis

Academic Year: 2021-22

Total No. of Students Registered: 131

Commo	Total No. of Students	Total No. of Students Passed	No. of Students Failed							
Course	appeared			GP (10)	GP (9)	GP (8)	GP (7)	GP (6)	GP (5)	
PS-III	131	128	03	20	37	36	21	14	00	
ED	131	127	04	01	29	34	31	26	06	
EHV	131	128	03	08	53	41	18	07	01	
HVE	131	127	04	01	12	38	37	28	11	
ED Lab	131	129	02	67	37	14	08	03	00	
PW Phase-I	131	130	01	48	49	30	02	01	00	
ES	131	127	04	42	39	19	17	08	02	
Cloud Computing (Moocs)	131	34	97	00	00	01	07	18	08	

Arrears Position - IV year / I Semester

	No.of students	All Pass	One Arrear	Two Arrears	Three Arrears	More than three arrears	Overall % of pass
ĺ	131	126	01	01	00	03	96.1832%

Performance overall Class Three Toppers

ROLL NO.	NAME	SGPA
19245A0206	KYATHAM TEJASWI	9.29
18241A02B3, 19245A0207	SUSHMA SWARAJ PADALA, MIDDE SHIVA KUMAR	9.17
18241A0242	PRIYANKA SETTIPALLI	9.08

Class coordinator

IV B.Tech - I Sem (EEE)

SECT	Course s	PS-III	ED	EHV	HVE	ED LAB	PW Phase-I	ES	Cloud Comput ing (Moocs)
ION	Course codes	GR18A 4012	GR18A40 13	GR18A40 14	GR18A 4021	GR18A 4022	GR18A 4061	GR18A4 102	GR18A 6012
	TOTAL	66	66	66	66	66	66	66	66
	PASS	64	63	64	64	64	65	64	11
	PASS(%)	96.9696	95.454	96.9696	96.9696	96.9696	98.484	96.9696	16.67
А	FACU LTY NAME	Dr. J. Sridevi	D G Padhan	Dr. B. Phaneendr a Babu	A Vinay Kumar	P. Ravi Kanth/ M. Naga Sandya Rani	R. Anil Kumar /Dr. J. Sridevi	Dr D S Naga Mallesw ara Rao	M. Naga Sandya Rani
	FACU LTY ID	516	1283	1563	881	1178/88 2	657/516	1598	882
	TOTAL	65	65	65	65	65	65	65	65
	PASS	64	64	64	63	65	65	63	23
	PASS(%)	98.461	98.461	98.461	96.923	100	100	96.923	35.3846
В	FACU LTY NAME	V Usha Rani	D G Padhan	M Prashanth	A Vinay Kumar	P. Ravi Kanth/ M. Naga Sandya Rani	M. Prashan th/ V. Vijayar ama Raju	Dr D S Naga Mallesw ara Rao	M. Naga Sandya Rani
	FACU LTY ID	1045	1283	1055	881	1178/88 2	361/127 9	1598	882

Class coordinator

HoD

FEEDBACK OF FACULTY CONDUCTING II BTECH CLASS WORK

minim

BRANCH - EEE - II Year SEMESTER - I ACADEMIC YEAR : 2022-2023 FEEDBACK NO:1 DATE: 14-12-2022

_		and the second se					
S.NO	SECTION	SUBJECTS	FACULTY ID	FACULTY NAME	DEPT	FEEDBACK 1 OF STUDENTS (4 Points)	RELATIVE FEEDBACK 1 (AVG OF ALL SUBJECTS)
-		ECA	888	G. Sandhya Rani	EEE	3.15	
N		PAE	1178	P. Ravikanth	EEE	3.12	
N 1		DCMT	1563	Dr B. Phaneendra Babu	EEE	3.31	
-		EME	1494	Dr. T. Suresh Kumar	EEE	3.42	
n .		ÞGT	361	V. Vijayarama Raju	EEE	3.12	
ת		IPF	1710	D. Preethi	EEE	2.79	3 17
7	Þ	PAEL	692	U. Vijaya Lakshmi	EEE	3.05	
∞		PAEL	1279	M. Prashanth	EEE	3.16	
9		DCMTL	361	V. Vijayarama Raju	EEE	3.33	
10		DCMTL	933	M. Rekha	EEE	3.26	
11		COI	760	D. Karuna Kumar	EEE	3.16	
1)		VEGC	1279	M. Prashanth	EEE	3.16	

J. Mr. Dr. HOD Signature

Scanned with CamScanner

FEEDBACK OF FACULTY BY STUDENTS dept: eee year: II b.tech semester : I Academic year: 2022-23

FB-1 Dt: 14-12-2022

	FACULT						FEEDBACK 1
S.NO	YШ	FACULTY NAME	DEPT	SUBJECT NAME	SECTION	NO. OF SECTIONS	(4 POINTS) (AVG OF ALL
1	888	G. Sandhya Rani	EEE	Electrical Circuit Analysis	A		SECTIONS)
2	1178	P. Ravikanth	EEE	Principles of Analog Electronics	A 7		3.15
ω	1563	Dr B. Phaneendra Babu	EEE	DC Machines and Transformers	A ;	-	2.16
4	1494	Dr. T. Suresh Kumar	EEE	Electromagnetic Fields	A	1	3.42
S	361	V. Vijayarama Raju	EEE	Power Generation and Transmission	A	1	3.12
6	1710	D. Preethi	EEE	Java Programming for Engineers	A	1	2.79
7	692	U. Vijaya Lakshmi	EEE	Principles of Analog Electronics Lab	A	1	3.05
8	1279	M. Prashanth	EEE	Principles of Analog Electronics Lab	A	1	3.16
9	361	V. Vijayarama Raju	EEE	DC Machines and Transformers Lab	A	1. 2.	3.33
10	933	M. Rekha	EEE	DC Machines and Transformers Lab	A	1	3.26
11	760	D. Karuna Kumar	EEE	Constitution of India (CI)	A	1	3.16
12	1279	M. Prashanth	EEE	Value Ethics and Gender Culture	A		3.16

L. HOD Signature

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Summation of Teacher's Appraisal by Students

Name of the Instructor Faculty ID	G. Sandhya Rani
Branch	888
Class and Semester	EEE
Academic Year	II-A SEM I
Subject Title	2022-23
Total No. of Responses/class strength	Electrical Circuit Analysis
Average rating on a scale of 4 for the response	

so turing on a scale of 4 for the responses considered:

S.No.	Questiens	and the second
1	Questions How does the teacher explain the subject?	Average
2	Knowledge and Dream the subject?	2.91
3	Knowledge and Preparation of teacher	3.55
4	The language and communication skills of the teacher is	3.19
-	Overall, how were the online classes conducted?	2.97
5	Rate your teacher's ability in interaction and clarifying the doubts	3.15
6	Kale your teacher's commitment in completing the syllabus	3.33
7	Rate your teacher's punctuality, usage of Audio. Visuals in online classed	3.40
8	Usage of teaching aids, real time examples and applications	3.09
9	Study material, PPTs, Conducting activities like quiz, etc.,	1
10		2.85
10	What is your overall opinion about the teacher?	3.06
		3.15

Net Feedback on a Scale of 1 to 4

3.15

Remarks by HOD:

Remarks by Principal:

Remarks by Director:

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY FEEDBACK OF FACULTY CONDUCTING BTECH CLASS WORK FACULTY WISE

EEE- B.Tech- II Year SEMESTER - I ACADEMIC YEAR : 2022-2023 FEEDBACK NO:2 DATE: 14-02-2023

FEEDBACK 3 (4 POINTS) (AVG OF ALL SECTIONS)	2.92	3.08	3.24	3.4	3.08	2.88	2.8	2.8	3.12	3.12	3.12	2.8
NO. OF SECTIONS	1	1	1	1	1	1	1	1	1	1	1	1
DEPT	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE
SECTION	A	Α	Α	Α	A	Α	Α	Α	A	A	A	A
SUBJECT NAME	Electrical Circuit Analysis	Principles of Analog Electronics	DC Machines and Transformers	Electromagnetic Fields	Power Generation and Transmission	Java Programming for Engineers	Principles of Analog Electronics Lab	Principles of Analog Electronics Lab	DC Machines and Transformers Lab	DC Machines and Transformers Lab	Constitution of India (CI)	Value Ethics and Gender Culture
FACULTY NAME	G. Sandhya Rani	P. Ravikanth	Dr B. Phaneendra Babu	Dr. T. Suresh Kumar	V. Vijayarama Raju	D. Preethi	U. Vijavalakshmi	M. Prashanth	V. Vijavarama Raju	M. Rekha	D. Karuna Kumar	M. Prashanth
S.NO FACULTY ID	888	1178	1563	1494	361	1710	692	1279	361	933	760	1279
ON.S	-	2	5	4	5	9	L	~	6	10	Ξ	

Scanned with CamScanner

]

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY FEEDBACK OF FACULTY CONDUCTING BTECH CLASS WORK FACULTY WISE

EEE- B.Tech- II Year SEMESTER - I ACADEMIC YEAR : 2022-2023 FEEDBACK NO:2 DATE: 14-02-2023

FEEDBACK (AVG OF						3.03						
FEEDBACK 2	2.92	3.08	3.24	3.4	3.08	2.88	2.8	2.8	3.12	3.12	3.12	2.8
FEEDBACK PERCENTAGE	73	17	81	85	17	72	70	10	78	78	78	70
DEPT	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE	EEE
FACULT FACULTY NAME Y ID	G Sandhva Rani	P Ravikanth	Dr R. Phaneendra Babt	Dr T Suresh Kumar	V Vijavarama Raju	D. Preethi	II Vijavalakshmi	M Prashanth	V. Vijavarama Raju	M. Rekha	D. Karuna Kumar	M. Prashanth
FACULT	888	1178	1563	1404	192	1710	607	1770	361	933	760	1279
SUBJECTS	The second frame of the second second	Electrical Circuit Alialysis	Frinciples of Analog Electronics	DC Machines and Haustonners	Electronizgueric Frens			Principles of Analog Electronics Lab	Principles of Analog Electronics Lau	DC Machines and Transformers Lab	Constitution of India (CI)	Value Ethics and Gender Culture
S.NO SECTION						-	۲ ۲		-1-	-	Т	Т
ons		1	2	E	4	2	٥		» «	9	2 :	= =

J. J. Signature

Summation of Teacher's Appraisal by Students

Name of the Instructor	G. Sandhya Rani	
Branch		
Class and Semester	Electrical and Electronics Engineering	1
	III rd year -I Semester	100
Academic Year	2022-23	100
Subject Title	Power Electronics Lab	
Total No. of Responses/class strength	47/65	
Average retire on a set fact at	11/05	

Average rating on a scale of 4 for the responses considered:

2.83

S.No.	Questions	Average
1	How does the teacher explain the subject?	2.79
	The teacher pays attention to	3.11
3	The language and communication skills of the teacher is	2.91
4	Is the session interactive	2.74
5	Rate your teacher's explanation in clearing doubts	2.83
6	Rate your teacher's commitment in completing the syllabus	2.89
7	Rate your teacher's punctuality	2.96
	Rate your teachers use of teaching aids	2.79
	Rate your teachers guidance in other activities like NPTEL,MOODLE,Swayam, projects	2.55
10	What is the overall opinion about the teacher?	2.77

Remarks by HOD: The two me violed Lby drom 2575, give at he had he had by drom 2575, give at he had had he are the for the former that had be at the former that he had be the had be the had be the had be had be the had be had b

Remarks by Principal:

Remarks by Director:

Academic Year: 2022-23 Year:II Semester:I MID Exam – I (Descriptive) Electric Circuit analysis Subject Code: GR20A2023

Date:09/12/2022 Duration:**90 min** Max Marks: **15**

Note: Answer any ALL questions. All questions carry equal marks.

	Answer ALL questions. All questions carry equal	marks	3 * 5 =	= 15 M	arks
Q.No	Questions	Marks	CO	BL	PI
1.	(a) Derive the expression for Trigonometric Fourier series equation and coefficients	[5M]	CO1	BL3	2.1.1
	OR				
	a) Find the Fourier series expansion of the rectified Sine wave shown in below figure	[3M]	CO1	BL1	2.1.3
2.	$x(t)$ $A = \int_{-2\pi} -\pi 0 \pi 2\pi 3\pi$ $x(t) = A Simul \text{for } 0 \leq t \leq \pi$ $= 0 \pi \leq t \leq 2\pi$ $Scanned \text{ with CamScanner}$				
	(b) State the Dirichlet's conditions for existence of Fourier series	[2M]	CO1	BL2	2.1.1
3.	(a) Derive the expression for Fourier transform of non periodic signal	[3M]	CO1	BL2	2.1.2
	(b) Find the Fourier transform of $x(t) = e^{-t} \sin 5tu(t)$	[2M]	CO1	BL1	2.1.3
	OR	1			
4.	(a) Briefly explain about Hilbert transform	[3M]	CO1	BL6	2.1.1
т.	(b) State the Parseval's property or Parsavel's energy	[2M]	CO1	BL2	2.1.2

	theorem of Fourier transform.				
5.	(a) (a) Determine the load resistance to receive maximum power from the source; also find the maximum power delivered to the load in the circuit shown in below figure $\frac{R_1 2 \cdot 2^{K^{n}}}{\sum_{i=10^{N}} \frac{R_2}{a \cdot 2^{K^{n}}}}$	[3M]	CO2	BL2	2.1.1
	(b) State compensation theorem	[2M]	CO2	BL3	2.1.2
	OR				
	(a) Evaluate time domain analysis of first order RC circuit	[3M]	CO2	BL4	2.1.1
6.	A series RC circuit consists of a resistor of 10Ω and a capacitor of 0.1 F as shown in Fig. 1.85. A constant voltage of 20 V is applied to the circuit at $t = 0$. Obtain the current equation. Determine the voltages across the resistor and the capacitor. Solution By applying Kirchhoff's law, we get $10i + \frac{1}{0.1} \int i dt = 20$ Fig. 1.85	[2M]	CO2	BL1	2.1.3

Academic Year: 202	2-23	Ι	MID F	Exam -	-I(0	bjecti	ve)		Date: 09/12/2022
Year: II]	Electr	ic Ci	rcuit	analy	sis		Duration: 10 min
Semester:I		S	ubjec	t Cod	le: GF	R20A2	023		Max Marks: 5M
Roll No:									

Note: Answer ALL questions. All questions carry equal marks.

	Answer all Objective Questions. All questions carry equ	ual m	arks			
Q.No	Questions	Op	tion	CO	BL	PI
1	What are the methods of fourier seriesA. trigonometric formC. Exponential formD. All	[]	CO- 1	BL- 2	2.1.2
2	 Any waveform can be expressed in Fourier series if A. Sampling conditions are satisfied B. Dirichlet conditions are satisfied C. Maxwell's conditions are satisfied D. None of the above conditions is required to be satisfied]]	CO- 1	BL- 1	2.1.1
3	Fourier Series applies to A. Only periodic signalsB. Only periodic signalsC. Both periodic and aperiodic signalsD. Only random signals]]	CO- 1	BL- 1	2.1.1
4	The fourier transform of a unit impulse function $\delta(t)$ is $A.\frac{1}{\omega}$ B. 1C. ω D. $\frac{1}{j\omega}$	[]	CO- 1	BL- 2	2.1.2
5	Fourier Transform applies toA. Only periodic signalssignalsC. Both periodic and aperiodic signalssignals]]	CO- 1	BL- 1	2.1.1
6	A trigonometric Fourier series hasA. a one-sided spectrumC. both one-side and two-sided spectrumD. none]]	CO- 1	BL- 1	2.1.1
7	Maximum power is transferred when load resistance is A. equal to Zero B. equal to half of the source resistane C. equal to source resistance D. none of the above]]	CO- 2	BL- 1	2.1.1
8	The reciprocity theorem is applicable to A. Single-source networks B. Multi-source networks	[]	CO- 2	BL- 1	2.1.1

	C. Both Single and Multi-source networks D. Neither Single nor Multi-source networks					
9	According to Millman's Theorem, if there are n voltage sources with n internal resistances respectively, are in parallel, then these sources are replaced by? A. single current source I' in series with R' B. single voltage source V' in series with R' C. single current source I' in parallel to R' D. single voltage source V' in parallel to R'	[]	CO- 2	BL-1	2.1.2
10	The exponential fourier series coefficients Cn in terms of trigonometric fourier series coefficients isA. $Cn = \frac{1}{2}(a_n - jb_n)$ B. $Cn = \frac{1}{2}(a_n + jb_n)$ C. $Cn = (a_n - jb_n)$ D. $Cn = (a_n + jb_n)$]]	CO- 1	BL-2	2.1.3

BL – Bloom's Taxonomy Levels

CO – Course Outcomes

PI – Performance Indicator Code3

Academic Year: 2022-23 Year:II Semester:I MID Exam – I (Descriptive) Electrical Circuit Analysis (GR20A2023)

Date:09/02/2023 Duration:**90 min** Max Marks: **15**

Note: Answer any ALL questions. All questions carry equal marks.

	Answer ALL questions. All questions carry equa	l marks	3 * 5	= 15 M	arks
			5 5	- 13 10	
Q.No	Questions	Marks	CO	BL	PI
1.	(a) A balanced delta connected load of (8+j6) ohms per phase is connected to a 3-phase, 50Hz, 230V supply. Calculate a. line current b. Power factor c. Reactive volt-ampere and d. Total volt-ampere	[3M]	CO3	BL2	1.3.1
	(b) Derive the relationship between line and phase quantities in a 3-phase delta connected	[2M]	CO3	BL2	1.1.1
	OR	1			
2.	Briefly explain two wattmeter method	[5M]	CO3	BL4	2.4.1
3.	Derive convolution Integral of Laplace transform	[5M]	CO4	BL2	1.1.1
	OR				
4.	In the circuit shown in Figure, obtain the equations for $i_1(t)$ and $i_2(t)$ when the switch is closed at $t = 0$. 50 V i_1 $i_2 = 0$ i_2 i_3 i_4 i_1 i_2 i_3 i_4 i_1 i_2 i_3 i_4 i_1 i_2 i_3 i_4 i_4 i_4 i_4 i_4 i_4 i_4 i_5 i_6	[5M]	CO4	BL3	2.3.1
5.	Derive the condition for symmetry and reciprocity of Z parameters	[5M]	CO5	BL2	1.1.1
	OR				
6.	(a) Find the z parameters of this circuit shown below Figure. V_1 V_1 V_2	[5M]	CO5	BL3	2.1.2

Academic Year: 202	22-23		Μ	ID Ex	xam –	I (Ob	jectiv	re)		Date: 09/	02/2023
Year: II		Elec	etrical	l Circ	uit Ar	nalysis	s (GR	20A20)23)	Duration:	10 min
Semester: I										 Max Mar	ks: 5M
Roll No:											

Note: Answer ALL questions. All questions carry equal marks.

	Answer all Objective Questions. All questions carry equ	al m	arks			
Q.No	Questions	Op	tion	CO	BL	PI
1	In a three-phase balanced star connected system, the phase relation between the line voltages and their respective phase voltage is given as under A. the line voltages lead their respective phase voltages by 30°. B. the phase voltages lead their respective line voltage by 30°. C. the line voltages and their respective phase voltages are in phase. D. the phase voltages lead their respective line voltage by 120°.	[]	CO3	BL2	2.4.1
2	Two wattmeter method of power measurement can be used to measure power inA. balanced circuitsC. both balanced and unbalanced circuitsD. none of the above]]	CO3	BL1	2.1.1
3	In two wattmeter methods of power measurements, when the pf is 0.5 A.The readings of the two wattmeter's are equal and positive B.The readings of the two wattmeter's are equal and opposite C.The total power is measured by only one wattmeter D. none of the above]]	CO3	BL1	2.1.1
4	The Laplace transform of a unit step function isA. $\frac{1}{s}$ B.1C. $\frac{1}{s^2}$ D. $\frac{1}{s+a}$]]	CO4	BL2	2.1.1
5	The Laplace transform of the first derivative of a function $f(t)$ isA. $F(s)/s$ B. $sF(s) - f(0)$ C. $F(s) - f(0)$ D. $f(0)$	[]	CO4	BL3	1.1.1
6	The inverse transform of $\frac{6}{S^4}$ isA.3B. t^2 C. t^3 D. $3t$	[]	CO4	BL3	2.1.1
7	The h parameters h_{11} and h_{12} are obtainedA. By shorting output terminalsB. By opening input terminalsC. By shorting input terminalsD. By opening output terminals]]	CO5	BL1	2.1.2
8	Which parameters are widely used in transmission line theoryA. Z parametersB. Y parametersC. ABCD parametersD. H parameters	[]	CO5	BL2	2.1.2
9	In parallel connection the parameters are added A. Z parameters B. Y parameters C. ABCD parameters D. H parameters	[]	CO5	BL2	2.1.2
10	Transfer function of a system is defined as the ratio of output to input in A. Z-transformerB. Fourier transformC. Laplace transformD. All of these	[]	CO3	BL1	2.1.1

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090

Direct Internal CO Attainments

Academic Year	22-23			tment	EEE				of the amme	Btech	-				-	1			I							ı						
fear - Semester	11-1		Cours :	e Name	ECA			Cours	e Code		GR20	A2023										Section	n		Α							
			м	id -I		1			1	1	1		1	1	1	N	lid -ll		-			1		-	1			Α	ssignment N	Narks	1	Assessment
	1a	2a	2b	3a	3b	4a	4b	5a	5b	6a	6b		obj		1a	1b	2	3	4	5	6			obj			I	Ш	ш	IV	v	Marks
nter CO Number → ,2,3,4,5,6,7	1	1	1	1	1	1	1	2	2	2	2		1,2		3	3	3	4	4	5	5			3,4,5			1	2	3	4	5	1,2,3,4,5
Aarks →	5	3	2	3	2	3	2	3	2	3	2		5		3	2	5	5	5	5	5			5			5	5	5	5	5	5
S.No/Roll No.							Note :	Enter	Marks	Betwe	en Two	Green	rows. An	other	Note :	Addit	ional (Colu	mns if	Requir	ed sho	uld be i	nserted	l after o	olumn	H and a	ppropriate	ly rename	e the Q. No	os.		
21241A0201	1.5			1	1		1	. 3		1	1		3.5	1		-	1	3		•	1			2			1		1	1	1	4
21241A0202	1.5			2 1	1								1.5			2	-	5			-			4			4	4	4	4	4	4
21241A0203	4			1	1 2	2		0.5	;	1	1		2.5	+	1	2		1			5			4			3	3	3	3	3	4
21241A0204									1	1								_				1					1	1	1	1	1	4
21241A0205	5		1		1			2	2 1				4.5				3		1	2	1		1	1			4	4	4	4	4	4
21241A0206	4			2	2			2					3.5			2		1		1				3			4	4	4	4	4	4
21241A0207	5					1	1	-		3	2		3.5				5	1			2			3			4	4	4	4	4	5
21241A0208	5				1	1		1.5	5				4			2					5			4			4	4	4	4	4	4
21241A0209	0												3					1			2			4			3	3	3	3	3	4
21241A0210	5							2.5							1	2					4			4			3	3	3	3	3	5
21241A0211																	3			1				2			1	1	1	1	1	4
21241A0212	5							2					2.5		1						4			3			1	1	1	1	1	5
21241A0213	2							3	-				2.5	_	1			5			3	3		2			1	1	1	1	1	4
21241A0214	2					1		1	-				2.5	_	_	1					4			2			1	1	1	1	1	4
21241A0215	5			1	1								3	_	1			2			2			2			1	1	1	1	1	4
21241A0216													2	_	_			1			1			4			1	1	1	1	1	4
21241A0217	5			3	3	_		2	_				3	-	_		5	5		1		_		3			1	1	1	1	1	4
21241A0218 21241A0219	3							1		1			2	_	-	1		5			3	-		2			3	3	3	3	3	4
21241A0219 21241A0220	5			3	5 4	2		3	-				3.5	_	-	2		5		2	5			3			1	1 4	1 4	1	1 4	4
21241A0220 21241A0221	5			4	2	1		1					3.5	-	-	2		4		2	5			4			4	4	4	4	4	4
21241A0222	3			1	-	2		1	-				3	-	-	2	4	2			2			3			1	1	4	1	4	4
21241A0222	3			1	1	2		1	-	-			2		-		4	2			1			3			5	5	5	5	5	4
21241A0223	4			1	1 1	1		2	,				5				2	1			3			4			3	3	3	3	3	5
21241A0225	5			-		1		1	-				4		2	2	~	3			4			3			5	5	5	5	5	5
21241A0226	1					-		-					2.5						1		- ·			1			1	1	1	1	1	4
21241A0227	5				2	2		3	1	1			3.5				4	1	_	2	2			3			4	4	4	4	4	4
21241A0228	4		1	2	2	1		1	. 1	1			4	+	1		5	4			2			3			1	1	1	1	1	4
21241A0229	5		1	1	1		1	3		1	1		4	1		1		4	1	1	2	1	1	3			4	4	4	4	4	4
21241A0230	5			1	1		2	-					4			2		5		2		1		2			1	1	1	1	1	5
21241A0231		1	L	1	1	1	1	L 2	2	1			4		1				1	2				2			1	1	1	1	1	4
21241A0232		1	L :	L	1			1	. 1				4			1			2	1	1		1	2			1	1	1	1	1	4
21241A0233					L								4	1							1	2		2			1	1	1	1	1	4
21241A0234	2			1	1			1					3					5			2			2			4	4	4	4	4	5
21241A0235	5			3		2		2	2 2				4	T			4	3		1	3			4			1	1	1	1	1	4
21241A0236	5			1.5	5			1	. 1.5				4				5	4			3			3			1	1	1	1	1	4
21241A0237	5							3					2				4	5			4			3			4	4	4	4	4	4
21241A0238								2					3					3			1			2			1	1	1	1	1	4
21241A0239	5		1			1	1			<u> </u>			3		1	. 2		4	·		2			3			1	1	1	1	1	4
21241A0240	5				2	2		2	2				3			2	3				3			2			3	3	3	3	3	4
21241A0241	4		1		1			1					2		-						2			2			3	3	3	3	3	4
21241A0242	5		1		1	1	1	L 3		2	1		3		-		3	3			3			4			3	3	3	3	3	4
21241A0243	5	l	1	I	1		1	<u> </u>	<u> </u>	2	1.5	\square	3.5	_	-		4	4	·	<u> </u>	3	<u> </u>	I	3			4	4	4	4	4	5
21241A0244	5	l	1	I	1		1.5		1			\square	4	_	-	1		4	·	<u> </u>	1	<u> </u>	I	3			1	1	1	1	1	4
21241A0245	5		1	3	3		3		. 3	1.5			3		2	2	4	5			3		L	4			5	5	5	5	5	5
21241A0246	5		1		1		1	L	3				4				2		1	1	3			1			1	1	1	1	1	5

21241A0247	2					L	1	1	1				2														5	5	5	5	5	4
21241A0248	5			2	1				3				4				3				3			2			4	4	4	4	4	4
21241A0249		1.5	2	2			1						3					4		3				3			1	1	1	1	1	4
21241A0250								2					3								3			2			1	1	1	1	1	4
21241A0251	2					1	1						2				2	1		1				3			4	4	4	4	4	5
21241A0252	5					2	1	2	2				5				4	5			4			4			4	4	4	4	4	5
21241A0253	0												2								1			2			4	4	4	4	4	4
21241A0254	5			1									3					5			1			3			3	3	3	3	3	4
21241A0255	5		2	2 3									4		2	2		4						2			4	4	4	4	4	5
21241A0256	1							1					3						1		1			2			3	3	3	3	3	4
21241A0257	5			3	2			3	1.5				4		3	2		5			5			2			5	5	5	5	5	5
21241A0258																											1	1	1	1	1	4
21241A0259	2	1				1		2	1				4			1	1	3			2			4			1	1	1	1	1	4
21241A0260	5							1					4			2					3			2			4	4	4	4	4	4
21241A0261	5							3	1				5			2		2			3			2			4	4	4	4	4	4
21241A0262	1	1											2			2	4							2			4	4	4	4	4	5
21241A0263	2												2			1					1			1			1	1	1	1	1	4
22245A0201			2	2		1	2	3	1				4		2	1								4			1	1	1	1	1	4
22245A0202		2	2	2 1	1			2	1				5				4	2			5			4			4	4	4	4	4	4
22245A0203	5					1	1	3					5				5	5			4			3			5	5	5	5	5	5
22245A0204	4			1						2	1		3				3				3			4			4	4	4	4	4	4
22245A0205	5							1.5					5				5	3			5			3			5	5	5	5	5	5
22245A0206	5					1	1	1					5				4		3		4			3			3	3	3	3	3	4
					.,												n		4.4.4									(0)				
					IŤ	your c	iass str	ength i	s > 60 t	nen <u>in</u>	sert ro	ws abo	ve the	green ro	wilasti	necora	<u>,</u> SI	iniiarly	y <u>aeiete</u>	: the <u>er</u>	npty r	uws ab	ove gre	en row	ir the cl	ass stre	enght is <	50)				
Total number of students					1																											
appeared for the	69	69	69	69	69	69	69	69	69	69	69		69		69	69	69	69	69	69	69			69			69	69	69	69	69	69
examination (NST)																																
Total number of students																																
attempted the question	56	6	7	23	12	12	16	47	21	6	4		65		12	26	27	42	5	12	51			66			69	69	69	69	69	69
(NSA)																																
Attempt % (TAP) =	81	9	10	22	17	17	22	60	20	9	c		94		17	38	39	61	7	17	74			96			100	100	100	100	100	100
(NSA/NST)*100	81	9	10	33	17	17	23	68	30	9	6		94		1/	30	39	61		1/	74			90			100	100	100	100	100	100
Total number of Students																																
who got more than 60%	42	1	5	10	7	1	4	27	7	4	2		49		5	18	22	29	1	1	30			38			40	40	40	40	40	69
marks (NSM)																																
Attainment % (TMP) =	75	17	71	43	58	8	25	57	33	67	50		75		42	69	81	69	20	8	59			58			58	58	58	58	58	100
(NSM/NSA)*100	-																											_				
Score(S)	3	0	3	1	2	0	0	2	1	3	2		3		1	3	3	3	0	0	2			2			2	2	2	2	2	3
													.																			
												Note : C	O attai	nment is	consider	ed to b	e zer	ro if the	attem	pt % is le	ess tha	n 30%										
CO Validation	1	1	1	1	1	1	1	2	2	2	2		1,2		3	3	3	4	4	5	5			3,4,5			1	2	3	4	5	1,2,3,4,5
	-	-	-	-	-	-	-	-	-	-	-		-,-				-	-	-	-				5,1,5				-	-	-		2,2,3,4,5
Course Outcome	CO1	CO1	CO1	CO1	CO1	CO1	CO1	CO2	CO2	CO2	CO2	i c	01,CO		CO3	CO3	соз	CO4	CO4	CO5	CO5			3,CO4,C			CO1	CO2	CO3	CO4	CO5	CO1,CO2,CO3,CO4,CO5
															_													_				
Marks (Y)	5	3	2	3	2	3	2	3	2	3	2		5		3	2	5	5	5	5	5			5			5	5	5	5	5	5
																								_								_
No. of COs Shared (Z)	1	1	1	1	1	1	1	1	1	1	1		2		1	1	1	1	1	1	1			3			1	1	1	1	1	5
Y/Z	5	3	2	3	2	3	2	3	2	3	2		2.5		3	2	5	5	5	5	5			1.667			5	5	5	5	5	1
			+	-	-										_																	
S*Y/Z	15	0	6	3	4	0	0	6	2	9	4		7.5		3	6	15	15	0	0	10			3.333			10	10	10	10	10	3
C01	1	1	1	1	1	1	1	0	0	0	0		1		0	0	0	0	0	0	0			0			1	0	0	0	0	1
	+		<u> </u>	1	-	-									_												-	-				+
CO2	0	0	0	0	0	0	0	1	1	1	1		1		0	0	0	0	0	0	0			0			0	1	0	0	0	1
CO3	0	0	0	0	0	0	0	0	0	0	0		0		1	1	1	0	0	0	0			1			0	0	1	0	0	1
CO4	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	1	1	0	0			1			0	0	0	1	0	1
	-			-		-																						-				-
CO5	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0		0	1	1			1			0	0	0	0	1	1
CO6	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0			0			0	0	0	0	0	0
C07	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0			0			0	0	0	0	0	0
					<u> </u>																											
Weighted Average for	604	602	602	604	005	1																										
Attainment relevance	001	002	03	CO4	CO5																											

 Weighted Average for Attainment relevance (Internal CODn)
 CO1
 CO2
 CO3
 CO4
 CO5

 1.70
 2.24
 2.28
 1.77
 1.49
 Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090

Indirect CO Attainments

		1			EEE		Name of the
Academic Year Year - Semester	22-23 II-I	-	Department Course Name :		ECA		Programme Course Code
real - semester	11-1	1	L	es survey on Scale 1			course coue
Enter Course Outcomes →	Explain the differences between linear and non- linear magnetic circuits	The concepts of generators and motors	Select the appropriate DC generator or DC motor for the given application	Able to test ant given DC Generator or DC motor.	Explain the different types of materials used in transformers.		
CO Number 1,2,3,4,5,6,7	1	2	3	4	5		
Marks	5	5	5	5	5		
.No/Roll No.			Note : Ente	er Marks Between Two (Green rows.	,	
First Record / 1	5	4	5	4	4		
2	5	5	5	5	5		
3	5	5	5	5	5		
4	5	5	5	5	5		
5	5	5	5	5	5		
6	5	5	5	5	5		
7 8	5	2	3	2	2		
9	5	5	5	2	2		
10	5	5	5	2	2		
10	5	5	5	5	5		
12	5	5	5	5	5		
13	5	5	5	5	5		
14	5	5	5	5	5		
15	5	5	5	5	5		
16	5	2	3	2	2		
17	5	5	5	2	2		
18	5	5	5	2	2		
19	5	5	5	2	2		
20	5	5	5	5	5		
21	5	5	5	5	5		
22	5	5	5	5	5		
23	5	5	5	5	5		
24	5	2	3	2	2		
26	5	5	5	2	2		
27	5	5	5	2	2		
28	5	5	5	2	2		
29	5	5	5	5	5		
30	5	5	5	5	5		
31	5	5	5	5	5		
32	5	5	5	5	5		
33	5	5	5	5	5		
34	5	2	3	2	3		
35	5	5	5	2	3		
36	5	5	5	2	3		
38	5	5	5	5	5		
39	5	5	5	5	5		
40	5	5	5	5	5		
41	5	5	5	5	5		
42	5	5	5	5	5		
43	5	2	3	2	3		
44	5	5	5	2	3		
45	5	5	5	2	3		
46	5	5	5	2	3		
47 48	5	5	5	5	5		
48 49	5	5	5	5	5		
50	5	5	5	5	5		
51	5	5	5	3	5		
52	5	2	3	3	3		
53	5	5	5	3	2		
54	5	5	5	3	2		
55	5	5	5	3	2		
56	5	5	5	3	2		
57	5	5	5	3	2		
58	5	5	5	3	3		
59	5	5	5	3	3		

Btech Section A

60	5	5	5	3	3		
61	5	5	5	3	3		
62	5	5	5	3	3		
63	5	5	5	3	3		
64	5	5	5	3	3		
65	5	5	5	3	3		
66	5	5	5	3	3		
67	5	5	5	3	3		
68	5	5	5	2	2		
Last Record 69	5	4	5	4	4		
if your class	strength is > 60 then <u>inse</u>	ert rows above the greer	<u>n row (Last Record)</u> , Simi	ilarly <u>delete the <mark>empty r</mark></u>	<u>ows above green row</u> if	the class strenght is < 60)
Total number of students appeared for the examination (NST)	69	69	69	69	69		
Total number of students attempted the question (NSA)	69	69	69	69	69		
Attempt % (TAP) = (NSA/NST)*100	100.00	100.00	100.00	100.00	100.00		
Total number of Students who got more than 60% marks (NSM)	69	63	69	48	51		
Attainment % (TMP) = (NSM/NSA)*100	100.00	91.30	100.00	69.57	73.91		
Score(S)	3	3	3	3	3		

CO attainment is considered zero if the attempt % is less than 30%

Indirect CO (COIn)	C01	CO2	CO3	CO4	CO5	CO6	C07
	3	3	3	3	3		

!! Caution !! For CO Values < 2.25 should be justified with Remidial Action Report.

							((cide)			Goka	Bachup	(Auton ally, Kuk	omous)	Hyderab	ering and ad – 500		ology											
Academic Year	22-23]	Depar	tment	EEE			Name (Progra	of the mme				ACCT IN	CO MILL	in the second	Btech													
Year - Semester	11-1]	Course	e Name :	ECA]	Course	Code		GR20	A2023											Section			Α			
	Q.No 1 (a)	Q.No 1	Q.No	Q.No 1	Q.No 1	Q.No 1	Q.No 1	Q.No 1	0.No 1	Q.No 1	I	Q.No 2b	Q.No	Q.No	Q.No	Q.No 4b	Q.No	Q.No	0.No 6a	Q.No	Q.No	Q.No	Q.No	Q,No	Q.No	Q.No	Q.No	Q.No	I
	Q.No 1 (a) Marks	(b) Marks	1 (c) Marks	(d) Marks	(e) Marks	(f) Marks	(g) Marks	(h) Marks	Q.No 1 (i) Marks	(j) Marks	Q.No Za Marks	Q.No 2b Marks	3a Marks	3b Marks	4a Marks	Q.No 4b Marks	5a Marks	5b Marks	Q.No 6a Marks	6b Marks	7a Marks	7b Marks	8a Marks	8b Marks	9a Marks	9b Marks	10a Marks	11a Marks	
Enter CO Number → 1,2,3,4,5,6,7	1	1	2	2	3	3	4	4	5	5	1	1	1	1	2	2	2	2	3	3	3	3	4		4	4	5	5	
Marks → S.No/Roll No.	2 <u>Note :</u> E	2 Enter I		Betwe	2 en Two	2 O Gree	2 n rows	2 • Ano	2 ther No	2 ote:/	5 Additio	5 nal Coli	5 Jmns i	5 if Requ	5 ired st	5 nould b	5 e inser	5 rted a	5 fter col	5 umn H	5 and	5	5		5	5	5	5	—
First Record / 1	0			арр	ropria	tely re	name	the Q.	Nos. F	For Cal	culatio	ins cons	sult De	epartm	ents C	O-PO Ir 0	ncharg	e											-
2 3	0	0	0 0		1				-		-	-	0			-			-	0									_
4	1	1	1 1	0	,	0		0	1	0			3				3	4			4	3			2		1	4	
5	2	1	1 0 1 2	2	1	0	0	1	1	0			8		4	4	1		1	4	4	4			1	2	7	2	H
7 8	2	2	2 0	0	1	0	0	0	2	0			8		0	0				2	4	0	0		0			8	-
9	2	2	2 1	0	1	1	1	1	2	1			8		4	3				3	4	3			2	1	3		
10	1	2	2 1	2	1	2	1	1	2	1	7		0		4	4		3	1	4	4	2					8	6	
12	2	1		2	1	1	1	2	1	2			8		2	0	3	4		4	4	1	1		1		8	4	-
14 15	2	2	2 2	1	1	1		1	1	1			6		4	4					4	3	2		2		-	7	-
16	2	1	1 0	0	1	1	1	2	2	1			6	0	3		4	4			4	2	1	2	2		4	6	
17	2	1	1 1 1 0	1	0	0	1	1	1	2			7		4	4	2	2	1	3	4		1		1	1	3	2	-
19 20	2	2	2 0	2	1	1	1	2	1	2	7				4	4					4	4	3	2				8	_
21	1	1	1 1		1	0	1	1	1	2			6		4	3				3	4	3	2	2	2		5	5	
22 23	2	1	1 1 2 2	2	1	0	2	2	2	1	6		6		2	4	E	E			4	2			2	1	4		
24 25	1	1		1	1	0	0	0	1	1	2	-	,	-	4	5	-	-	2	3	4	3	1		,	1	6	7	-
26	2	1	2 1	2	1	1	0	1	0	0			7		4	4			3	3			2	2	1	-	3		
28	0	1	/ 0 1 1	1	1	0	0	0	1	0	3		1		0	0	1	2	3	4					1	0		6	
29 30	2	1		2	1	0	0	0	1	0		L	1	L	4	4	L	L	0		2	2	1	3	1		4	3	L
31 32	2	2	2	1	1	2	1	0	0	1			7		4	4					4	3	1	3	_		7		H
33	1	1	2 0	2	1	1	0	1	2	2			2		4	4	1	2		4	3	2	1	2			4	8	P
34 35	2	1	L 0	1	0	1	1	0	1	1			8		4	4	0		0		4	2			2	2	8		
36	2	3	2 0	1	1	1	1	1	2	1			7		4	4				0	4	1	2	1	1	1	8	7	⊢
38 39	2	2	2 1	1	2	1	1	0	0	0			6		2	2					4	3			2	2		5	
40	2	1	2 1	2	2	2	1	2	2	0	2	E.	9		4	3	3	4	1	1	5	4	3		2		5		
41 42	0	0	0 0	0	0						1		1		0	0	2	0	2	3								2	H
43	0															0	3	1										4	
45	2	2	2 1	1	1	2	1	1	2	1			8		4	4			4	4			3	3			8		
46 47	2	2	2 1 2 2	2	1	1	1	2	2	2			3		4	5				4	5	4			3	2	8		
48 49	2	2	2 2	2	2	2	1	2	2	2			6		5	5					4	4	1	2			6	7	-
50 51	2	2	2 2	1	2		1	1	2	2			3		4	4							1	2			6		
52	1	1	1 1	2		2	1	2	1	0			6		4	4			3	4			1	0	2	1	7		
53 54	2	1	2 2	2	1	0	1	2	2	2			7		5	5					4	3	2	4	2	2	8		H
55 56	1	(1	0	1	0	1	2	0	0			3		3	3			2	4	4	2	3	0	1	2	3		
57	2	1		0		0	0	0	1	1	9									4	3				2			6	
58 59	2	3	2 2	0	1	2	1	2	2	2	7		9		5	5	1	4	3	2	5	4	8	8	1	3	8	4	
60 61	1	2	2 0	1	0	1	1	2	1	1			3		4	4			1	3	4	2			3	1	0	7	-
62 63	1	1	1 0	0					1	1			3	1						3	3							3	_
64	2	3	2 2	2	2	1	1	2	2	2	5		8		4	4					4	4			3	2	9	7	
65 66	1	1	2 1	2	1	0	1	2	2	0	8		1		4	3	1	2			3	0	2		2	1	4	4	⊢
67 68	1	(0	0	-	0	1	0	1	0			3		0	0	1	1	1		4	1			1	0	1	0	-
69	1	2	2 2	1	1	0	1	1	1	1			5		2	0			3	4					1	2	5		-
70 last record 71	1	2		0			1	1	0	-	-						2	0	2	2	5	4	2		1	0	0	0	
	ir class stre	ength is	i > 60 ti	hen <u>inse</u>	rt rows	above t	the gree	<u>n row</u> ,	Similarly	y <u>delete</u>	the em	pty rows	above	green r	<u>ow</u> if th	ne class s	trengh	it is < 6	0)										
Total number of students appeared for the examination	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71		71	71	71	71	_
(NST) Total number of students	66	68	65	66	67	62	60	62	64	61	15	1	55	3	54	53	17	20	21	29	51	43	26		36	25	48	31	
attempted the question (NSA) Attempt % (TAP) =	92.96	95.77	91.55		94.37	87.32	84.51	87.32	90.14	85.92	21.13	1.41	77.46	4.23	76.06	74.65	23.94	28.17	29.58	40.85	71.83	60.56	36.62		50.70	35.21	67.61	43.66	
(NSA/NST)*100 Total number of Students																													-
who got more than 60% marks (NSM) Attainment % (TMP) =	40	36	13	24	8	16	3	24	26	15	10	0	43	0	40	37	5	8	6	21	48	20	5		3	2	40	24	-
Attainment % (TMP) = (NSM/NSA)*100	60.61 3	52.94	20.00	36.36 1	11.94 0	25.81 0	5.00 0	38.71 1	40.63	24.59 0	66.67 3	0.00	78.18	0.00	74.07	69.81 3	29.41 0	40.00	28.57 0	72.41	94.12	46.51	19.23 0		8.33 0	8.00 0	83.33	77.42 3	<u> </u>
Score(S)	3	2	0	1					1 zero if th				3 10%	0	3	3	0	1	0	3	3	1	0		0	0	3	3	_
CO Validation	1	1	2	2	3	3	4	4	5	5	1	1	1	1	2	2	2	2	3	3	3	3	4		4	4	5	5	
Course Outcome	C01	CO1	CO2	CO2	CO3	CO3	CO4	CO4	CO5	COS	CO1	CO1	CO1	CO1	CO2	CO2	CO2	CO2	CO3	CO3	CO3	CO3	CO4		CO4	CO4	C05	CO5	L
Marks (Y)	2	2	2	2	2	2	2	2	2	2	5	5	5	5	5	5	5	5	5	5	5	5	5		5	5	5	5	Ľ
No. of COs Shared (Z)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	
Y/Z	2	2	2	2	2	2	2	2	2	2	5	5	5	5	5	5	5	5	5	5	5	5	5		5	5	s	5	<u> </u>
S*Y/Z	6	4	0	2	0	0	0	2	2	0	15	0	15	0	15	15	0	5	0	15	15	5	0		0	0	15	15	
																													<u> </u>
C01	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0		0	0	0	0	<u> </u>
CO2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0		0	0	0	0	<u> </u>
C03	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0		0	0	0	0	
CO4	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1	1	0	0	
C05	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	1	-
CO6 CO7	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	\vdash
07	v		0		, v		v	v	v	ľ	v	v	v	ľ	v	v	v	v	v	v	v	v	v		v	v	v	v	L

 Weighted Average for Attainment relevance
 CO1
 CO2
 CO3
 CO4
 CO5

 1.67
 1.54
 1.46
 0.11
 0.50

!! Caution !! For CO Values < 2.25 should be justified with Remidial Action Report.

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090

Summary Sheet CO Attainments

Academic Year:	22-23	Name of the Program:	Btech
Course/Subject:	ECA	Course Code:	GR20A2023
Department:	EEE	Year - Semester :	-
Section	A		-

Attainment/CO	CO1	CO2	CO3	CO4	CO5	
Attainment for Direct Internal CO (Mid I & II, Assignments, Tutorials, Assessments, etc.)	1.70	2.24	2.28	1.77	1.49	
Attainment for Direct External CO (End Semester Exam)	1.67	1.54	1.46	0.11	0.50	
Direct CO (0.3*Internal + 0.7*External)	1.68	1.75	1.71	0.61	0.80	
Indirect CO	3.00	3.00	3.00	3.00	3.00	
Final CO (COFn) = (0.9 x Direct CO + 0.1 x Indirect CO)	1.81	1.88	1.84	0.85	1.02	

со	Course Outcome	Remedial Action for COs Less than 75% (2.25)
CO1	Explain the differences between linear and non- linear magnetic circuits	Need to conduct more assignments
CO2	The concepts of generators and motors	Seminars to be conducted
CO3	Select the appropriate DC generator or DC motor for the given application	Need to conduct more assignments
CO4	Able to test ant given DC Generator or DC motor.	Revision should be done more
CO5	Explain the different types of materials used in transformers.	Revision should be done more

ID No.	Name of the Faculty	Department	Signature
888	G Sandhyarani	EEE	

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090

Direct Internal CO Attainments

Academic Year	22-23	Department	EEE	
Year - Semester	11-1	Course Name :	ECA	

Name of the Programme	Btech
Course Code	GR20A02023

P-Outcomes		D	C	D	F	F	6		Ţ	Ŧ		T		2000
C-Outcomes	А	В	C	D	Е	F	G	Н	1	J	К	L	PSO1	PSO2
1	Н	Н	М		Н			Н	М		М	Η	М	М
2	Н	М		М	М	М	М	Н	М	М	М	М	М	
3	Н	Н	М	М	М			М	М		Н	М		М
4	Н	Н	М	М	М		М	М	М		Н	М	М	
5	Н	М	М		Н	М		Н	М	М	Н	Н		М

Enter H,M, L values of CO-PO Mapping Matrix in blue shaded rows 12 - 18 for seven CO s automatically PO Attainments are Calculated

Convert above mappings to scale 1-3

P-Outcomes C-Outcomes	А	В	С	D	Е	F	G	Н	Ι	J	К	L	PSO1	PSO2
CO1	3	3	2		3			3	2		2	3	2	2
CO2	3	2		2	2	2	2	3	2	2	2	2	2	
CO3	3	3	2	2	2			2	2		3	2		2
CO4	3	3	2	2	2		2	2	2		3	2	2	
CO5	3	2	2		3	2		3	2	2	3	3		2
Expected Attainment	3.00	2.60	2.00	2.00	2.40	2.00	2.00	2.60	2.00	2.00	2.60	2.40	2.00	2.00

Fill the below table with obtained attainments in mids, external and Tutorial/Attendence

CO1	CO2	CO3	CO4	CO5	
1.81	1.88	1.84	0.85	1.02	

Final Cos	CoF
-----------	-----

	Attained PO A	Attained PO B	Attained PO C	Attained PO D	Attained PO E	Attained PO F	Attained PO G	Attained PO H	Attained PO I	Attained PO J	Attained PO K	Attained PO L	PSO1	PSO2
CO1	1.81	1.81	1.21		1.81			1.81	1.21		1.21	1.81	1.21	1.21
CO2	1.88	1.25		1.25	1.25	1.25	1.25	1.88	1.25	1.25	1.25	1.25	1.25	
CO3	1.84	1.84	1.22	1.22	1.22			1.22	1.22		1.84	1.22		1.22
CO4	0.85	0.85	0.56	0.56	0.56		0.56	0.56	0.56		0.85	0.56	0.56	
CO5	1.02	0.68	0.68		1.02	0.68		1.02	0.68	0.68	1.02	1.02		0.68
CO6														

C07														
Attained	1.48	1.28	0.92	1.01	1.17	0.96	0.91	1.30	0.98	0.96	1.23	1.17	1.01	1.04

Note : If Average Attainment of a PO is #Div/0! Relace the corresponding PO with blank.

	А	В	С	D	Е	F	G	н	I.	J	К	L	м	N
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
Expected	3.00	2.60	2.00	2.00	2.40	2.00	2.00	2.60	2.00	2.00	2.60	2.40	2.00	2.00
Attained	1.48	1.28	0.92	1.01	1.17	0.96	0.91	1.30	0.98	0.96	1.23	1.17	1.01	1.04
	U	U	U	U	U	U	U	U	U	U	U	U	U	U

Note : PO is Satisfied if attained PO > 75, U indicates PO Unsatisfied

Faculty Co-Ordinator

HOD